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Preface

This volume, divided into Parts V to VII, is a continuation of the first one
which was devoted to fundamentals of numerical discretizations. It contains a
presentation of computational methods for inviscid and viscous flow models as
they have evolved over the last decade.

Over the last twenty to thirty years considerable progress has been achieved
and the field of Computational Fluid Dynamics (CFD) is reaching a mature
stage, where most of the basic methodology is, and will remain, well established.
Basically, the 1970s can be considered as the development period for the
foundations of the discretization methods for transonic potential models and
for the foundations of the central discretization methods for the Euler and
Navier-Stokes equations, following on the landmark introduction of the
Lax—Wendroff scheme.

Although prepared by earlier fundamental developments in the line of
Godunov’s method for physically based discretizations of the Euler equations,
the upwind, high resolution methods have reached their maturity and been
established on solid theoretical grounds in the 1980s. They are by now as firmly
established as the central methods. Hence a large variety of techniques are
available and a considerable experience has already been accumulated with
various discretizations of the Euler equations.

The concomitant tremendous development of computer performance over
the same period has resulted in the present capacity of solving two-dimensional
Euler equations in seconds of computer time, and simple three-dimensional
problems in minutes of CPU times, with the best available codes on the powerful
supercomputers. Hence more attention can be given to the validation, accuracy
and reliability of numerical flow simulations and to their extensions to complex
industrial design and analysis applications.

Another consequence is the current possibility of obtaining Navier—Stokes
solutions, within the Reynolds-averaged approximation, in rather short
computer times (at least for two-dimensional problems and simple three-
dimensional configurations). Although the accumulated experience with
Navier—Stokes solutions is not yet as large as with the inviscid models, it is
rapidly building up. Due to the strong connection between Euler and Navier—
Stokes equations at high Reynolds numbers, most of the inviscid methods are
of application to the viscous flows. The major topic of uncertainty remains

XV



Xvi

essentially connected to the fundamental problems of turbulence and its model-
lization within the Reynolds-averaged approximation.

The content of this volume reflects in a certain way the situation just described.

Part V deals with the simplest inviscid approximation which is, in certain
flow regimes, equivalent to the full system of Euler equations, namely the full
potential model. It contains three chapters, 13 to 15, covering the mathematical
formulations (Chapter 13), the discretization of subsonic potential flows
(Chapter 14) and the treatment of transonic situations (Chapter 15).

Part VI is devoted to a detailed presentation of the Euler equations and of
the basic numerical techniques developed in order to discretize the complex
system of inviscid, compressible conservation laws. It covers Chapters 16 to 21,
dealing with the algebra of the Euler equations (Chapter 16), the central schemes
(Chapter 17 and 18), the treatment of boundary conditions (Chapter 19) and
the upwind methods (Chapters 20 and 21).

Part VII finally introduces the discretization methods for the Navier—Stokes
equations and contains two chapters, 22 and 23. Chapter 22 covers the basic
mathematical formulation of Reynolds-averaged Navier—Stokes equations with
an introduction to turbulence models and the last chapter summarizes the
approaches for compressible and incompressible viscous conservation laws.

The present text is directed at students at the graduate level as well as at
scientists and engineers already engaged, or starting to be engaged, in
Computational Fluid Dynamics. Although Computational Fluid Dynamics
requires a good theoretical base, it remains for the large part an experimental
science since many properties depend on the non-linear character of the flow
equations and cannot be fully analysed. Therefore, a fraction of the problems
added to each chapter request the writing of a program, mainly for the
one-dimensional flow equations.

Since the development of a code covers many aspects: selection of a scheme,
implementation of boundary conditions, selection of a time integration method,
definition of control mechanisms of non-linear instabilities,...,it is recom-
mended to experiment intensively with as many variants as possible, either
individually or by sharing the number of selected options and different test
cases within a group or a class of students. A single modular code with many
options is a remarkably effective and instructive ‘numerical laboratory’.

Initial versions of some chapters have been written while holding the NAVAIR
Research Chair at the Naval Postgraduate School in Monterey. I am particularly
grateful to Ray Shreeve for this opportunity and for his friendship.

Some sections on Euler equations have been written during a summer stay
at ICASE, NASA Langley, and I would like to acknowledge particularly
Dr Milton Rose, former Director of ICASE, for his hospitality and the
stimulating atmosphere.

I have also had the privilege to benefit from results of computations performed,
at my request, on different test cases by several groups and I would like to
thank D. Caughey at Cornell University, T. Holst at NASA Ames, A. Jameson
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at Princeton University, M. Salas at NASA Langley, and J. South and
C. Gumbert also at NASA Langley, for their willingness and effort.

During the redaction of this book, I have had some stimulating discussions
on the subject of the Kutta condition with T. Pulliam and A. Rizzi for which
I am grateful.

I have also the pleasure to thank my coworkers C. Lacor and G. Van Dijck

for their comments and support, as well as my secretary J. D’haes for her
considerable help with figures and text.

Ch. HIRSCH
BRUSSELS, JULY 1988
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PART V: THE NUMERICAL
COMPUTATION OF
POTENTIAL FLOWS

The potential flow model is the simplest inviscid description that takes full
account of compressibility effects. The lower levels of approximation, such as
the small disturbance equation and the linearized potential flows, will not be
discussed here since they do not contain all the geometrical or compressibility
properties of the full potential equation. Moreover, the computational speed
of modern computers allows the computation of full non-linear potential flows
at only a marginal increase in computer cost, compared to the cost of
applications of small disturbance equations or Panel methods (Kutler, 1983).
Therefore there does not seem to be a strong justification to develop operational
codes based on approximation levels lower than the full potential model.

The development of numerical methods for the solution of the full potential
equation, in particular for transonic and supersonic flow configurations with
the presence of shock and sonic surfaces, has been an essential topic of research
in the 1970s. Presently, this problem can be considered as solved, and
three-dimensional potential codes are operational tools in industry and applied
systematically in preliminary design stages. Due to the advancement in computer
technology and in algorithms, computational times have evolved from several
hours to a few seconds for a three-dimensional computation—typically of the
order of five seconds on a CRAY-X-MP supercomputer for 50 000 mesh points.
(Holst and Thomas, 1983; Shankar, 1985.) The reader will find in this last
reference a synthesis of the level of achievement reached in the numerical
solution of potential flows, while the review of Holst et al. (1982) gives an
overview of the state of the art typical of the end of the 1970s.

Chapter 13 will describe the various mathematical formulations of the
potential model as they can be used for space discretizations.

A first distinction is to be made between stationary and unsteady flow
situations. Many, if not all, of the computational methods for unsteady potential
flows do rely on, or are close to, the approaches developed for steady flows.
Therefore steady-state computational methods form the basis of nearly all the
potential flow applications and we will restrict our presentation of potential
flow discretizations to steady flows.
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Figure V.1 Comparison of Euler and potential flow computations for a NACA 0012 profile
under incidence at subsonic flow conditions. (Courtesy A. Verhoff, McDonnell Aircraft Co., USA)

Another basic distinction is to be made between subcritical and supercritical
flows. As discussed in Section 2.9.2 in Volume 1, the subsonic potential flow
model is fully equivalent to the full system of Euler equations if the initial flow
is irrotational. In this case, the potential model is an exact description of the
inviscid flow. An example is shown in Figure V.1 for a two-dimensional NACA
0012 airfoil under 3.5 degrees of incidence. The Euler and potential flow
computations are nearly identical and the discrepancy with experimental data
on the suction surface is most probably tied to viscous effects generated at the
leading edge. '

Chapter 14 will deal with the rather simple and by now classical computation
of subsonic potential flows. The steady-state potential equation is of the elliptic
type and a very large variety of techniques can be used to discretize and solve
the non-linear algebraic system of equations. Most of the methods described
in Chapter 12 to Volume 1 can be, or have been, applied together with various
approaches to treat the non-linearity due to compressibility.

We would like to mention at this point that the methods presented in
Chapter 14 can be applied to other elliptic or parabolic problems having the
same mathemetical structure, such as the heat conduction equation defining
the temperature distribution in a stationary medium, electrostatic potentials, etc.

The much more complex problem of transonic potential flows will be treated
in Chapter 15.

The hyperbolic character of the potential equation in supersonic flow regions,
as well as the possible occurrence of shocks, require a particular treatment,



3

since the straightforward extrapolation of the subsonic algorithms into the
supersonic zones leads to unstable codes.

It will be seen that the final outcome of the analysis of the transonic behaviour
will lead to the possibility of maintaining the subsonic discretization methods
in all flow regions, but with the addition of some form of upwind estimation
of the density or mass flux, or alternatively by the addition of artificial viscosity
terms.

Since the transonic, isentropic potential model is at a lower level of
approximation of inviscid flows, compared to the Euler equations, as seen in
Chapter 2 in Volume 1, large differences in shock position and strength,
compared to Euler solutions, can be observed.

Section 15.3 will discuss the consequences of this fact, in particular the
observed non-uniqueness of transonic isentropic potential flows, resulting from
a progressive breakdown of this model with increasing shock strength. Some
of the techniques which could be applied in order to overcome these isentropic
limitations connected to a potential shock will then be presented. This requires
the introduction of non-isentropic corrections.

As an illustration of the achievement of different methods, several results of
computations performed with high accuracy or (and) on very fine meshes for
two- and three-dimensional flow configurations will be presented. Many of
them could be considered as reference potential solutions and we would like
to thank particularly at this point D. Caughey, C. Gumbert, A. Jameson, M.
Salas and J. South for their willingness to perform these computations.
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Chapter 13

The Mathematical Formulations of
the Potential Flow Model

The potential flow model can be expressed in several ways, through differential
as well as integral, weak, formulations. The differential form is certainly the
most common and, if the conservative form is the only one appropriate for
numerical discretizations, the quasi-linear form is best adapted to the analysis
of the characteristic properties of the potential flow model. Finite difference
methods will be based on the conservative differential equation, while the finite
volume method will take as starting point the integral form. This will also be
the case for the finite element applications, which require a weak, integral
formulation.
These various formulations will be defined in the following sections.

13.1 CONSERVATIVE FORM OF THE POTENTIAL EQUATION

The basic assumption for the existence of a potential, inviscid flow is the
condition of irrotationality, that is the condition of vanishing vorticity vector.
If the initial flow field is irrotational it will remain so according to Kelvin’s
theorem and the flow will be isentropic.

For inviscid irrotational flows, one can define a potential function ¢ by

T=V¢ (13.1.1)

The conservative form of the potential model is obtained from the continuity
equation (1.2.2):

‘z_ft’;v'.(pw) ~0 (13.1.9)

Remember that the term under the gradient is the mass flux F = pv with
Cartesian components f = pu, g = pv, h= pw.

The momentum and energy equation reduce to the following relation for the
stagnation enthalpy:

4 H=H, (13.1.3)

0¢
ot

where H, is constant over the whole flow field. The density is a unique function
4
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of Vd) and d,¢ and can be written for a perfect gas, with stagnation density p,
and stagnation enthalpy H,, following equation (2.9.6):

ﬁ:[l_w_@]ll(y-l) (13.1.4)
Po 2H, H, o

since the potential flow is considered as isentropic.
The steady-state form of the potential equation reduces to

V-(pV¢) =0 (13.1.5)
with the isentropic density law
V)2 Jo-1
ﬁ=[1—%] (13.1.6)
Po 0
and the energy equation
2
H5h+07=H0 (13.L.7)

In the following, the partial derivatives of ¢ and other scalar quantities with
respect to an independent variable will be indicated by a subscript when no
ambiguity can arise; that is we will write ¢, for 8,¢, p, for d,p, and so on.
Subscripts on vector quantities such as velocities will represent the
corresponding projections.

In many practical computations, the explicit form of equation (13.1.2) is
required in general curvilinear coordinate systems.

Example 13.1.1 Two-dimensional potential equation in arbitrary coordinates

If the coordinate transformation is defined by

¢=£¢(x,y)

(E13.1.1)
n=n(x,y)
the potential equation is written as
dfp\ o[ U\ @ V)
—t=)l+=lp=)+—1p-)=0 E13.1.2
at(J) ac(”J) 6n<pJ (12

The contravariant velocity components U, V can be defined in function of the
Cartesian components as

ot o

Usgdet g by =ut i (E13.1.32)
on on

V=5; x+5¢y=’7x“+nyv (E13.1.3b)

where u, v are the Cartesian velocity components.



The stationary potential equation is also to be obtained as

- 0 I3}
V-(pv)=a—¢[(g“¢¢+g”¢")§]+a—ﬂ[g“¢¢+g”¢")§]=o (E13.14)

since one has also
U =g11¢§+g12¢”

E13.15
V=921¢§+g22¢" ( )
The matrix tensor g has the following components:
gt=¢i+ 8
gl =g" =&m.+ &,
g2 =ni+n; (E13.1.6)

In practical computations, one will often have to determine the metric
coefficients through the inverse relations
x = x(%1) (E13.17)
y=y(&n)
This is obtained by the relations
$x=J Sy= =% (E13.1.8)
r’x=_Jy§ rly=Jx§

with the Jacobian J:

J= 1

= (E13.1.9)
Xe¥n— Xn)e

Example 13.1.2  Potential equation in cylindrical coordinates

In cylindrical coordinates (r,6,z), one has an orthogonal coordinate system,
with metric coefficients h, =1, h, =, h; =1 and J = 1/r. The components g%
are diagonal with g'' =1, g?>=1/r%, g**=1.

The potential equation becomes, in steady-state conditions,

0 o 0 o 0 <p6¢>
NorZ Ve 2 pr 2V 2 {22 V=0 1.1
6r(pr 6r>+ az(”' az>+ ANl (E13.1.10

13.2 THE NON-CONSERVATIVE FORM OF THE ISENTROPIC
POTENTIAL FLOW MODEL

The isentropic potential model can be written in non-conservative form by
working out the derivatives of the density (see Problem 13.1):

(%[d)n + at(_v.¢)2] = (1 - Mi)d’xx + (1 - M,z;)d)yy + (1 - M:)d’zz - 2MxMy¢xy

—2M M., —2M,M,$,, (13.2.1)
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As mentioned above, the subscript on ¢ indicates a partial derivative with
respect to the corresponding coordinate, but the same subscript on the Mach
number M indicates the corresponding velocity component.

The second term in the left-hand side of this equation can be explicitly
calculted by

(V) = 2Pxbu + 6,0y + $.0.1) (13.22)
and the Mach numbers are defined in the coordinate direction x, y, z by
RV >
¢ ¢ ¢ (13.2.3)
2, 02
M=z

The speed of sound c is given by

Cz=(ée) _w
op/s p

=@ —-Dh=0@- 1)[Ho—

T 4)2
(V4) —d),:l (13.24)
2

for perfect gases.

For steady flows, the left-hand side of equation (13.2.1) vanishes, and one
obtains the non-conservative equivalent to equation (13.1.5) in Cartesian
coordinates. It can be written in condensed notation, with a summation
convention on i, j = x, y, z:

(0 — MM )¢;=0 (13.2.5)

13.2.1 Small-perturbation potential equation

The small-perturbation potential equation has been for a long time the basis
for potential flow theories, particularly for transonic flows where it is known as
the transonic small-perturbation (TSP) equation, as it is a simplified form valid
for flow fields along slender bodies aligned with the x axis (Figure 13.2.1).

It can be written in various ways from a small-perturbation expansion of the
full potential equations (13.1.5) or (13.2.5). Defining the perturbation potential
® by

¢=Ug(x+®) (13.2.6)
the velocity components are defined by

u=Ux(1+®,) (13.27)

v=U_®,

where U, is the free-stream velocity. With the assumption of a dominating
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Figure 13.2.1 Small-perturbation potential flow along slender body

x component of the velocity field, that is v «u, the two-dimensional form of
equation (13.2.5) reduces to

(1- M3, +®,, =0 (13.2.8)

neglecting second-order terms in ®, and assuming M 3 « 1.
The factor of the first term can be worked out by introducing the free-stream
Mach number M, and the relation

c2<l+%Mz)=ci<l+z—g—1M§°) (13.29)

derived from the energy equation (13.1.7) for a perfect gas.
This leads to the following form of the small-perturbation potential equation
see Problem 13.10):

[1-M2 —(+1)M2®,]0,, +[1 —(y— DM2®,]®,, =0 (13.2.10)

neglecting terms proportional to ® and @2,
This equation is generally further simplified to the more classical form

[1-M2 —(y+1)M20,]P,, + D, =0 (13.2.11)

The sonic condition corresponds to u=®,=(1—M2)/[(y +1)M2]. The
first-order TSP equation is the Prandtl-Glauert equation

(1—M2)D,, +®, =0 (13.2.12)

If y = f(x) is the equation of the thin airfoil surface, it is customary with the
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small-disturbance hypothesis to set the surface boundary condition on the x
axis, that is at y =0. Hence, the flow is calculated in the half-plane where the
airfoil occupies a portion of the x axis. The presence of the airfoil will appear
in the computation only through the boundary condition (Figure 13.2.1)

v=Ug,+uf (x)=U,f'(x) (13.2.13)

where f'(x) is the derivative of f.
Other formulations of the small-perturbation equations as well as references -
to earlier work can be found in J. Slooff (1982).

13.3 THE MATHEMATICAL PROPERTIES OF THE
POTENTIAL EQUATION

The mathematical properties of the potential flow equation can best be obtained
from an analysis of the non-conservative form (13.2.1).

13.3.1 Unsteady potential flow

The time-dependent potential equation is a quasi-linear, second-order partial
differential equation and it is of importance to determine its type: hyperbolic,
parabolic or elliptic (see Chapter 3 in Volume 1).

Since this equation contains a second derivative with respect to time, and
since a coordinate system can always be chosen such that one of the velocity
components is locally zero, at least one of the second-order space derivatives
will have a positive coefficient, indicating that the equation is hyperbolic with
respect to time, independently of Mach number.

In many unsteady potential flow computations, the additional approxima-
tion of low-frequency unsteady motion is introduced, allowing the second-order
time derivative in the potential equation to be neglected. However, this does
not change the type of the equation.

13.3.2 Steady potential flow

For steady potential flows, the situation with respect to the type of the equation
is more complex.

In two dimensions, x, y, it was shown in Chapter 3 that the potential equation
is hyperbolic in (x, y) for supersonic velocities, parabolic along sonic lines, M = 1
and elliptic in the subsonic flow regime.

In three-dimensional flows, the situation is somewhat more complicated, since
at each point one has an infinity of possible characteristic directions and the
properties of the system in supersonic flows also depend on the coordinate
selected to act as a time-like direction.

Following the guidelines of Chapter 3, the stationary form of the
three-dimensional potential equation (13.2.5) is first cast into a system of
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first-order equations by addition of the irrotationality condition

—

Vxv=0 (13.3.0)
Defining the column vector U as
u &
U=jv|=]|¢ (1332
w ¢,

representing the velocity field and adding the y and z projections of the irrota-
tionality equation (13.3.1), under the form

o ou

ox oy

a_w _@ ~o (13.3.3)
ox 0Oz

to the potential equation (13.2.1) written as
(1 —MHu +(1—Mlv, + (1 — M2w, — MM u, +v,) — M,M,(w, +v,)

MM, (u,+w)=0 (13.34)
one obtains the following equivalent first-order system:
(A0, + A,0,+ A30,)U =0 (13.3.9)

The three matrices A4; are defined by

1-M2 —MM, —MM,
A,=]| o 1 0 (13.3.62)
0 0 1
~MM, 1-M? —-MM,
Ay =] -1 0 0 (13.3.6b)
0 0 0
-MM, —MM, 1—M?
Ay = 0 0 0 (13.3.6¢)
—1 0 0

The system (13.3.5) will be hyperbolic, if normals n'(n,,n,,n;) can be found,
satisfying the condition (3.2.22) for the vanishing of the determinant

det|A,n, + Ayn, + Azn,[=0 (133)

Since 7 is defined up to an arbitrary scale factor, each solution of (13.3.7)
represents a one-parameter family of characteristic surfaces, defined by a relation
of the form n,/n, = f(n,/n,).

A straightforward calculation, which is left to the reader as an exercise (see
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-«

X

Figure 13.3.1 Condition for # to be the normal to a characteristic
surface S

Problem 13.3), leads to the characteristic condition

-y (TW)U-W
o G I

0 (13.3.8)
c

(T-1,) =¢? (13.3.9)

after removal of a trivial solution n, =0, with 1, representing the unit vector
along the normal 7.

Hence, the normals to the characteristic surfaces are the directions along
which the projection of the velocity is sonic (see Figure 13.3.1). If the velocity
v is subsonic, there is no solution to (13.3.9) and the potential equation (13.1.4)
or (13.3.4) is elliptic. When the velocity is supersonic directions # satisfying
equation (13.3.9) can be defined and the potential equation is hyperbolic. The
directions # generate a cone around the velocity vector v of opening angle 28
such that (see Figure 13.3.2)

or

1
=— 13.3.10
cos f v ( )
or
g=C_, (13.3.11)
04 2
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Cone of normals

.
characteristic surface normal to n

X

Figure 13.3.2 Mach cone and cone of the normals # to the characteristic surfaces S

where p is the Mach angle defined by

) 1
sin u i _ (13.3.12)
Each normal 7 lying on the cone of opening angle (m — 2u) centered on the
velocity defines a characteristic surface. The envelope of the characteristic surfaces
when 7 sweeps its cone forms a second cone, of opening angle 2u centered on
the velocity, the Mach cone. The Mach cone limits the zone of influence of point
P and the downstream prolongation of the cone defines the domain of dependence
of P.

However, if for supersonic absolute velocities the potential equation is
hyperbolic, it is yet not clear which coordinate direction can be taken as a
time-like variable. This is of importance since, following the developments of
Chapter 3, Section 3.4, a time-like direction z implies that an arbitrary
perturbation in the direction X(n,,n,) of the x,y plane will propagate in the z
direction with a ‘frequency’ w equal to — n,. The component n, is the solution
of equation (13.3.8), written as follows after multiplication by ¢? and development
of the scalar products:

n2(c? —w?) — 2wn, (V%) + *K2 — (T-X)* =0 (13.3.13)
where
T-K =un,+on, (13.3.14)

A real solution n, to the quadratic équation (13.3.13) will exist for all %, if the
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discriminant is positive, that is if
w7 K)? — (2 —wH)[c*%2 — (V' %)*]>0
or _
w?K2 4+ (7-%¥)* > c?x? (13.3.15)

Since one can always choose k% = 1, this equation will be satisfied for all % if
w2 > c? (13.3.16)

that is if the velocity projection in the considered direction is supersonic. For
subsonic flows, equation (13.3.13) has no real solutions.

Referring to Figure 13.3.2, the condition (13.3.16) implies that all time-like
directions are located inside the cone of normals. In a curvilinear system of
coordinates, a particular coordinate direction, say ¢! = ¢, will be time-like if
the associated covariant component of the normal direction, n,, is real for all
values of n,, ny. Applying the above procedure, one obtains the condition on
the contravariant velocity component U:

U

>¢ (13.3.17)

S : characteristic line .o
CL1, CL2 : limit directions for which vilp=c¢

intersections with cone of normals
M .
ng normal to § = ct line
+ .
nn :normal to n=ct line

Figure 13.3.3 Conditions for the directions £ to be a time-like coordinate
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that is the ‘physical’ value of the velocity projection in the direction normal to
the £!-constant lines has to be supersonic (Figure 13.3.3); see also Problem 13.5.

A direction outside the cone of normals will correspond to an elliptic
behaviour and will be called a space-like direction.

In Figure 13.3.3 the line S is the intersection of the surface &3 ={ with the
characteristic surface and the lines CL1 and CL2 are the intersections with the
cone of normals. Hence, CL2 is perpendicular to S and makes an angle (n/2 — g
with the direction of the local velocity. All the normals between the limit lines
CL1 and CL2 correspond to time-like directions since the projection of the
velocity on this direction is larger than the sonic velocity. This is the case for
the normal 7 to the #-coordinate line (a line £ = ct). Note that the projection
of the velocity along this direction is equal to the left-hand side of equation
(13.3.17). On the other hand, the normal 7, to the {-coordinate line (a line
n=ct) is outside the lines CL1 and CL2 and therefore the associated
n-coordinate line is space-like.

The application of these considerations to the computation of three-
dimensional supersonic potential flows with embedded subsonic regions has
been developed by Shankar and Osher (1983) and Shankar et al. (1983).

In practical computations, the separation surface between subsonic and
supersonic regions is not known and is part of the solution. Next to the
occurrence of shock discontinuities, this makes up for the difficulties of transonic
potential flows.

13.4 BOUNDARY CONDITIONS

A computational domain has to be selected, limited by a boundary I' and the
boundary conditions for the potential flow computations have to be defined.

13.4.1 Solid wall boundary condition

At solid boundaries, the normal velocity is

0
02 = pp,=q (1341)
on
where
q=0 (13.4.2a)
if the solid wall is at rest, while
g=pv, 1, (13.4.2b)

if the solid wall has a velocity ¥, where 1, is the unit vector along the normal
to the boundary. If a local mass flux 7, per area unit is injected through the
wall surface (Figure 13.4.1), then

q=nm,, (13.4.2¢)
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Figure 13.4.1 Boundary conditions along a wall with real or simulated mass
flow injection

For instance, in viscid-inviscid interaction computations where the potential
flow is corrected for the boundary layer thickness, the displaced boundary of
the inviscid region is the edge of the boundary layer. For small boundary layer
thicknesses the displaced boundary of the computational region can be modelled
by the introduction of the displacement thickness 6*. In this case a mass balance
over the domain ABCD gives

d
= — (PD,0* 1343
riy = 2 (PVe%) (134.3)

where v, is the velocity at the edge of the boundary layer and d! the elementary
distance along the wall.

134.2 Far field conditions

At the external boundaries of the computational domain, the flow field is
assumed to be known. In e:ﬁemal flow problems, such as the flow around a
body under uniform inflow V, the potential flow is known by

=V, X+, (13.4.4)

where @, is an arbitrary constant and X the distance to a point on the boundary
with respect to a chosen reference.

Single airfoil

For lifting bodies with circulation 'y the contribution of the circulation to the
potential flow at large distance has to be taken into account (Figure 13.4.2).
This is best represented, for a two-dimensional airfoil, by a vortex singularity,
carrected for compressibility effects (Ludford, 1951):

Practiers = V' X + "tan"[,/l—Mg,tan(o—aw)]+¢o (13.4.5)

where @ is the angular position of a far field point, I'y the circulation and M,
the Mach number correspondmg to the free-stream velocity V under an
incidence angle of a,
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Figure 13.4.2 Computational domain and boundary conditions for isolated airfoils

Figure 13.4.3 Computational domain for cascade configurations
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1343 Cascade and channel flows

(Figure 13.4.3) The upstream velocity field is assumed to be known and the
potential field along AB can be determined. Hence, a Dirichlet condition
¢ = ¢.p(y) can be applied along the inlet section AB. At the outlet, the flow is
generally not completely known and the potential at point H is unknown.

Therefore the most appropriate boundary condition is a Neumann condition
expressing conservation of mass flow through the cascade channel, assuming
uniform flow conditions along the outlet section of the computational domain
GH:

A
(pPn)on = (plvln)'A—l (13.4.6)

2

where p, is the inlet specific mass, v the inlet velocity with normal component
v, and A,, A, the inlet and outlet areas.

For transonic cascade and channel flows, additional problems arise when
shock waves are present under choked conditions due to the non-uniqueness
of the potential solutions for given physical inlet and outlet conditions (see
Section 2.9 in volume 1). In addition, for choking conditions occurring when
the flow is accelerated through.sonic conditions at a minimum area section of
the channel, the mass flow is fixed by the critical, sonic conditions and is therefore
unknown. Consequently, a Neumann boundary condition cannot be applied
and the condition (13.4.6) has to be replaced by a more appropriate condition.
A detailed analysis has been given by Deconinck and Hirsch (1983) and the
following boundary treatment can be applied.

Choked flow with subsonic inlet and outlet flow conditions

This will occur, for instance, in a convergent—divergent channel when the
pressure difference between inlet and exit is sufficiently large. The flow is
accelerated through sonic velocity in the throat and further accelerated to
supersonic velocities. The supersonic region is terminated by a strong shock
which brings the flow back to subsonic conditions. As discussed in Section 2.9.2,
the shock position cannot be defined by the physical variables, since the outlet
isentropic variables such as velocity, pressure and density are uniquely
~determined by the subsonic isentropic flow conditions. In addition the mass
flow is unknown and only Dirichlet conditions can be applied. The following
approach will lead to a unique isentropic potential flow with shocks:

Dirichlet condition at inlet: . ¢ = ¢, . :
Dirichlet condition at outlet: ¢ =.¢, based on a unlform1ty assumption

The potential difference (¢, — ¢,) fixes the shock position and the mass flow
results from the computation. The same 51tuat10n occurs for a divergent channel
with sonic inlet and subsonic outlet.



18
Divergent channel with shock

If the inlet is supersonic with a subsonic outlet the flow is not necessarily choked
but a shock is present. Therefore one has to impose:

(1) A Neumann condition at inlet (or outlet) to fix the mass flow;
(2) A potential difference by imposing the value of the potential at one point
on the Neumann boundary.

13.4.4 Circulation and Kutta condition

Single airfoil

As discussed in Section 2.9, lifting airfoils require a circulation whose intensity
is defined by the Kutta condition. In practical computations a branch cut is to
be defined along which the potential will have a discontinuity given by equation
(2.9.11). (Figure 13.4.2):

dp—p=Ig= ¢s— Pa (134.7)

The value of the circulation is updated during the iterative process by imposing
equal velocities or pressures at both sides of the trailing edge.

Cascades

For cascades, along the boundaries BC and AD all physical flow variables are
identical. The circulation around the closed contour of Figure 13.4.3, ABGHA,
is equal to

g =s(vy, —vy,) (13.4.8)

where s is the spacing between consecutive blades. Therefore, the periodicity
condition can be satisfied by imposing

¢p— a=Pp — Pp =10y, (13.4.9a)
b — Pu=dq — Pg =503, (13.4.9b)

The value of v,,=1v,,cos f, is obtained either by imposing f, as an outlet
variable or by applying a Kutta condition at the trailing edge, under the form
of requiring equal velocities at E and F.

135 INTEGRAL OR WEAK FORMULATION OF THE
POTENTIAL MODEL

The weak formulation forms the common basis for finite element and finite
volume discretizations. For any smooth function W, the weak form of the
potential equation in conservation form (13.1.2) is obtained after multiplica-
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tion by W and integration over the computational domain Q. A partial
integration is performed, leading to

J p,WdQ—f pV¢-VWdQ+§ pd, WAl =0 (13.5.1)
Q Q r
In general, W is chosen to be zero on the part S, of the boundary where the
function ¢ is known and the boundary integral reduces to a contribution on
the part of the boundary where a Neumann boundary condition is imposed.
If a discontinuity surface £ propagating with speed C exists in the flow
domain Q, the application of the approach followed in Section 2.7 leads to the
jump condition valid locally along X and expressing mass conservation over
the discontinuity),

[p¢,]—C-1,[p]=0 (13.52)

where T,, is the unit vector normal to the discontinuity surface  and the square
brackets indicate the discontinuous variation over the surface, [p] = p, — p,.

Comparing with the Rankine-Hugoniot relations derived in Section 2.7, it
is seen that the potential discontinuities do not satisfy the jump relations for
the momentum components. Instead they satisfy the isentropic condition [s] =0,
which is not valid for the Rankine~Hugoniot discontinuities. Since the latter
represent the correct, inviscid conservation laws over discontinuities, the
potential shocks will represent an isentropic approximation to the Euler shocks.
These shocks are connected to an entropy increase proportional to (M2 —1)3
and hence the potential shocks might be valid for Mach numbers close enough
to 1, say M < 1.25; see Section 2.9.2 for a more detailed discussion and
comparison.

The finite volume discretization for a given mesh point will be obtained
with W =1 in the control volume associated to the mesh point and zero
outside.

For finite element formulations, with a Galerkin method, W is equal to the
element interpolation functions.

135.1 Bateman variational principle

The weak formulation (13.5.1) can also be obtained from Bateman’s variational
principal (Bateman, 1929), stating that the pressure integral

I =f pdQdt (13.5.3)
Q

is extremum, where dQdt is a space-time domain element and where the initial
and boundary conditions are supposed to be satisfied for all variations 5¢.

If not, their contribution has to be added to the functional (13.5.3). For
instance, the boundary condition p¢,=g¢g on I'; will give a contribution
fr.9¢dI de.
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The pressure p is considered as a unique function of the potential derivatives
defined by the isentropic relations for a perfect gas:

h\Vo-D y T2 Yi(y—1)
p_ (_) = <£> = (1 _"__ﬂ) (13.54)
Po \ho Po 2H, H,

The first variation 81 is obtained by

op op op -dp >
sI=| opdQdt= 6.+ L 5p, + 8¢, +——56¢, |dQde (1355)
L P L<a¢, o6, " 09, ag,

From equatiorr(13.5.4) one has, with a straightforward calculation (see Problem
13.7),

Sp=—p[V-67 +6¢,]= <g—p>-6p =c%dp (13.5.)
)
and
bp=—p2 o _ % (13.57)

Hence, with the potential definition v = V¢, one obtains
ol = — j (V- 0V + pd¢,)dQdt = — L(qus-Va(p +pd,5¢)dQdt (13.58)
Q
which gives, after integration by part, with ¢ =0 on the boundaries,
ol = f [V-(pV¢) + 0,0)0¢ dQdt =0 (13.59)
Q

Hence, the vanishing of the first variation is equivalent to the mass conservation
equation (13.1.2), written for the potential function. Note also that equation
(13.5.8) put to zero is equivalent to the weak formulation (13.5.1) with W =4¢
and a partial integration of the time derivative term.

13.5.2 Analysis of some properties of the variational integral

It is interesting to estimate the second variation of the pressure functional, since
its sign will indicate if the functional extremum is a maximum or a minimum.
Since this is of particular importance for steady-state potential flows, we will
develop this analysis for the stationary formulation (13.1.5), (13.1.6).

The variational Bateman integral can be written without the time variable,
and the first variation 4] becomes

ol = —f pT-07 dQ (13.5.10)
Q
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The second variation is obtained by the following steps:

8 = —5J p7-07 dQ
Q

- J 5p(T+67)dQ — f (67 67)dQ — f o(T-6°7)dQ (13.5.11)
Q

In the last term 27 is taken to be zero, since 67 is the independent variable.
With 8p defined by equation (13.5.7), one obtains for the second variation

8 = — f p[(aa)z (va)z]dﬂ (13.5.12)
o ,

The two terms under the integral can be written out explicitly, in Cartesian
coordinates,

7872 2 2
- T20) =<1 —“—2)5u2+<1 —"—2>5u2+(1 ——)5 2—@&4 80
€ c c c?

—2“—“"5 6w——5v ow (13.5.13)

This expression parallels completely the right-hand side of the potential equation
(13.2.5). This is of course not by accident, since the same type of information
is contained in both equations. The sign of the second variation 621 can best
be analysed by comparing the expression under the integral in equation (13.5.12)
with the characteristic relation (13.3.8).

Both expressions are identical, if 67 is replaced by 7. Therefore, one has
immediately the following results:

(1) The quantity [(67)* —((¥ 6v)*/c?)] is always positive for arbitrary
variations 7 if the flow is subsonic. In this case, 621 < 0 and the extremum
of the variational pressure integral is a maximum.

(2) Along sonic surfaces, 62/ =0 for certain 'variations and the curve
representing the relation between I and the velocity variation goes through
an inflection point.

(3) If the flow is supersonic, one has to distinguish, following the relations
(13.3.13) to (13.3.15), between space-like and time-like variations 67" If 6V
is a space-like variation, that is if 67 lies outside the cone of normals of
Figure 13.3.2, the second variation 62 remains negative. When 67 is
time-like, within the cone of normals, 8%1 is positive and I has a minimum.

This is summarized in Figure 13.5.1 by a one-dimensional representation of the
functional I in the function of v.

An essential guideline in the supersonic case will be to avoid velocity variations
during the computations which cause a change of sign of the second variation
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821. This would have in consequence a loss in unicity of the computed solutions
associated with a loss of positive definiteness of the iteration matrix, which
could become singular.

This will become clearer in the next chapter, where it will be seen that the
Jacobian iteration matrix applied on d¢ for a Newton iteration on the density
is identical to the quadratic form defining the second variation 621. This should
not be surprising to the reader, since the first variation 61 is precisely the
potential flow equation applied to d¢.
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PROBLEMS

Problem 13.1

Derive the quasi-linear potential equation (13.2.1) by applying the relation (13.5.7) to
the conservative form (13.1.2).

Hint: Work out the spatial gradients and replace the derivative of the density by
derivatives of the potential function based on equation (13.5.7).

Problem 13.2
Obtain the matrices (13.3.6).

Problem 13.3

Obtain, by working out the determinant (13.3.7), the relation (13.3.8) for the characteristic
normals.

Hint: Introduce the scalar product

1
-(vA)=Mn, + M, + M.n,
¢



24
Problem 13.4

Derive the relations for the characteristic lines for a two-dimensional potential flow.
Show by an explicit calculation that they form an angle u = sin 1/M with the velocity
vector.

Hint: Solve for the directions (n,,n,) of the normals. The characteristic lines are
orthogonal to 7.
(1) Define 1 =n,/n, and obtain the characteristic normal directions as
_ MM, + (M2 —1)'72
1-M?
(2) Obtain the characteristic directions as s4:
- MM, F(M?*-1)'2
1—M?2

and consider a local coordinate system with the x axis aligned with the velocity
vector.

Ay

St

Problem 13.5

Obtain the condition (13.3.17) for the coordinate line £ = ¢ to be time-like, taking into

account that the scaled contravariant component U/, /g!! is the projection of the velocity
in the direction normal to the line £ = constant.

Hint: Take ¥ =n,€2+ ny€° and develop 7% = 7% + v'n, and W2 =%2 + (n,)%g'' +
2k'n,. Follow the reasoning which led to equation (13.3.15) and choose k! =0.
Apply also to the two-dimensional case of Figure 13.3.3.

Problem 13.6
Obtain equation (13.5.2).

Problem 13.7

Obtain the relation (13.5.6) for the pressure variations from the isentropic relation (13.5.4).

Hint: Apply the density relation (13.1.4) and the perfect gas law for the stagnation
quantities.

Problem 13.8

Define the critical speed of sound ¢, by the condition |¥,|=c, and obtain the
steady-density relation as a function of a non-dimensional velocity ratio:

<|

M2 =

(3]
* 0

Define the critical density and show that one can distinguish the supersonic from the
subsonic points by comparing the expression

~1
(1-M”—> with —>—  or  p with p*
*y4+1 y+1
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Hint: Apply the constancy of energy to relate ¢, and H,. Obtain

—1\¥o-b
£=<1_Mi"_)
Po r+1

The last observation is often used in programs where the density is evaluated in order
to detect supersonic points.

Problem 13.9

Repeat the calculations of Example 13.1.1 for the three-dimensional potential equation,
with the coordinate transformations & = &(x, y, z), n = n(x, y, 2), { = {(x, , 2).

Note that the gradients of ¢ define the transformation between the Cartesian and
contravariant components of velocity; for instance U =7V The metric tensor g*
defines the transformation between the gradients of the potential in the curvilinear system
and the contravariant velocity components; for instance U* = g*#¢,, where ¢, = 0¢/0¢°

with £1 =¢, E2 =9, E3=(.

Problem 13.10

Obtain the small perturbation potential equations (13.2.10) and (13.2.11). Derive first
equation (13.2.9) using equation (13.2.4).

Hint: Write M?2 as follows:

2 2 2 €
MZ=M2(1+@) e
c

and work out using equation (13.2.9), neglecting quadratic terms in ®2.

Problem 13.11

Write the small perturbation potential equation in conservation form and derive the
corresponding shock relations. Compare with the Rankine—Hugoniot relations derived
from the Euler equations.

Hint: Obtain

[( —M2)$, — ’;" ] +d,,=

and the jump relations
+1
[(1 -M2)p, - ¢2] +[4,1=0

where the square brackets now represent the jump over the discontinuity: [A] = 4, — 4,
and dy/dx is the slope of the discontinuity in the xy plane.



Chapter 14

The Discretization of the Subsonic
Potential Equation

Since the stationary subsonic potential flows are governed by an elliptic equation
they can be computed in a straightforward way, the numerical resolution of
smooth elliptic problems being nowadays an easy task.

The main steps to be defined are the following:

(1) The selection of a discretization scheme. One has the choice between finite
difference, finite volume and finite element representations. All of them
have been applied and are in use at different places with equal success. The
choice is therefore more a matter of personal taste than of efficiency.

(2) The iteration method to deal with the non-linearity introduced by the
density.

(3) The algorithm for the resolution of the obtained algebraic system.

In addition the interaction between the last two steps and the implementation
of the boundary conditions will completely define the numerical scheme.

With subsonic flows, which have a smooth behaviour, we will be able to
operate with rather coarse meshes, with the exception of certain localized regions
such as corners, leading or trailing edges of airfoils, and other regions where
strong flow gradients can be expected. Hence, the total number of mesh points
will be restricted and nearly any of the methods described in Chapter 12 in
volume 1 for the resolution of algebraic systems, will be sufficiently effective.

Therefore, readers only interested in subsonic potential flows will be able to
limit themselves to this chapter. It could be mentioned at this point that the
algorithms for subsonic potential flows are equally applicable to all problems
governed by a similar equation, such as heat conduction in solid bodies, electrical
potential distributions, groundwater flows, etc.

The particular problems attached to transonic flows will be dealt with in the
following chapter. They concern essentially steps 2 and 3 since the density
variations contain all the non-linearities, in particular the transition from
subsonic to supersonic regions and the eventual presence of shock discontinuity
surfaces.

We will deal essentially with the conservative form (13.1.5) of the potential
equation. As discussed in Chapter 6, a non-conservative formulation of a

26
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conservation law, in the present case mass conservation, generates internal
sources, although for smooth flows these contributions will be of the same order
as the truncation errors. However, in regions with strong gradients or with
discontinuities, unacceptable errors are introduced in this way and the
conservative form has to be used.

Also, for the sake of simplicity, we will present the various discretizations for
two-dimensional flow problems. In most cases the generalization to a higher
dimension will be straightforward and we refer readers to the appropriate
literature for more details concerning three-dimensional applications.

14.1 FINITE DIFFERENCE FORMULATION

In Cartesian coordinates, the most straightforward discretization, of
second-order accuracy, is the central symmetrical form following equation (4.4.7)
in volume 1.

O potential evaluation

X  density evaluation

j+12 (o I B

]
1 : ;
R Rl TS - CI N
D 1A
i '
: N :
' :
' i
) ]
' ;
. 5 =
]
B I T
. 1
=1 —O—
]
12 4 '
’l‘ )
t
t% s |
i-12 i+12

Figure 14.1.1 Cartesian two-dimensional finite difference computational mesh



28

Referring to Figure 14.1.1, the following two-dimensional scheme can be
defined:

1 _ 1 _
(—A?‘s:pi—llz,jéx +A—yié;pi’j_ 1/25’, )¢U=0 (1411)

where 6* and &~ are defined in Chapter 4 as the forward and backward
difference operators, acting on all the terms to their right. The subscripts indicate
the variable on which the difference operators act. For memory, we recall the
definitions

6+¢i=¢i+1_¢i 6—¢i=¢i_¢i—l 5¢i=¢i+1/2—¢i—1/2

“¢i=_¢‘+1/2;¢i-112 5’¢i=¢i+1'2'¢1—1___

Worked out explicitly, equation (14.1.1) becomes, for Ax = Ay,

Pis 1/2,j(¢i+ 1.j~ ¢ii) —Pi- 1/z,j(¢ij - d’i— 1,1) + Pij+ 1/z(¢.-,j+ 1 ¢ij)
= Pij-12(bij— b:;-) =0 (14.1.3)

(14.1.2)
uog;

As seen from Figure 14.1.1, the discretized equation will involve the five points
marked on this figure. Note that the densities have to be evaluated at the
mid-point locations, while the potential values are evaluated at the corners of
the mesh. This standard five-point molecule is shown in Figure 14.1.2 and
reduces to the five-point Laplace operator for incompressible flows.

l R
j+1

T S
Py i125] ey Ny
A N

Lo

o _ &
) P

i-1 i i+l

Figure 14.1.2 Computational molecule for the finite
difference scheme (14.1.3)
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2
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o
1.M2 2eM) 1m2
b4 X
- 2

MM 1M, a}MxMy

Figure E14.1.1 Computational molecule for the non-
conservative potential equation and second-order central
differences

Example 14.1.1 Non-conservative potential equation in two dimensions
In a Cartesian mesh, the following equation has to be discretized:
(1-M3)¢,. +(1 -MHd,,—2M M., =0 (E14.1.1)
With central differences, one obtains in point (i, j) for Ax = Ay, with second-order
accuracy,
(1 - M;Z;)ij(¢i+ 1,j 2¢i,j + ¢i—1.j) + (1 - Mi)i,j(¢i,j+ 1= 2¢ij + ¢i.j—l)
- %(MxMy)ij(d’H 1,j+1 ¢i+ 1,j-1 " d’i— 1,j+1 + d’i- 1.j- 1) =0 (E14.1.2)
The computational molecule can be visualized as in Figure E14.1.1.
Observe that the matrix of the system (E14.1.2) is diagonal dominant for
subsonic flows. In supersonic flows, for instance for a flow in the x direction,

the matrix does not remain diagonal dominant. This is easily seen and left as
an exercise for the reader.

141.1 Numerical estimation of the density

The numerical estimation of p" at the mid-point locations is obtained from the
velocity field, since p is a unique function of the velocity squared.

In order to obtain the mid-point velocities, for instance at point (i + 1/2, j),
one can apply the following operations:

1 1
“i+l/2,j=A_xé: ¢ij=A—x(¢i+1,j—¢zj) (14.1.4)
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1 1
Viv1/25= A—yl‘xéy+ ¢i+ 12, A_yﬂx(¢i+1/2.j+1 — iy 1/2,j)

1
=Ky(¢1+14+1 +¢.~,j+1_¢i+1,j—¢ij) (14.1.5)

Another alternative for the estimation of v,,,,, is to consider the central
derivative with respect to j since equation (14.1.5) 1s only a first-order estimate
of v, 5, (it is actually a second-order estimation of v,,,; ., ;2)- To second
order, one has

1 1 ‘
Viv1/2,5 ='A_y”x5y¢i+ 12 4_A—};(¢i+ i1 T Pijer = Pirrj1— Piy-1) (14.1.6)

Various alternatives can be applied to evaluate the densities needed in
equation (14.1.3):

(1) Evaluate the densities at the mid-points of Figure 14.1.1 by
Pi+ 1/2-j=p(6i2+1/2,j) (14.1.7)

Each mesh point requires the evaluation of two densities, p,,, ; and
Pij+1/2 and, if needed, the density at a mesh point can be obtained by
averaging the four surrounding mid-cell values. For instance,

Pij= %(PH 2. it Picij2.F Pijrrp + Puj- 1/2) (14.1.8)

(2) Estimate the density at the centres ABCD of the finite difference mesh of
Figure 14.1.1. For instance,

Piv12,j+1/2 =p(7;i2+1/2,j+ 12) (14.1.9)

where the corresponding velocity component could be evaluated by

Uiv 12,5412 U y2.j+1 t i 12, (14.1.10)

_1
Viv1/2,j+12= Wiy jer2 H e 1/2)
and

—_

CHPE P U +0Y 120102 (14.1.11)

The velocity components at mid-point are evaluated with the help of
equations (14.1.4) and (14.1.6) to second-order accuracy (see also Problem
14.1).

Another variant could be to use equations (14.1.10) and (14.1.11) directly
for the squares of the velocity components.

The densities at the mid-points in Figure 14.1.1, needed for equation
(14.1.3), can then be obtained by averaging the corresponding centre-point
values. For instance,

-1
pi+ 1/2,j = 7(pi+ 1/2,j+1/2 + pi+ 1/2,j— 1/2) (14112)
This variant is more economical since the number of density evaluations
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per mesh point is one instead of two (or three in a three-dimensional
problem). This is a welcome gain, since the fractional power in the
expression of the density is a costly numerical operation.

(3) Evaluate the density at the mesh points, via

P.'+1/2.j=l%(pii+p"+l,i) (14.1.13)
Pijr12=35(p;; + Pij+ 1)
with
pu=p(52) (14.1.14)
and

uij=‘;'(“1+l/2.j+u“‘/2'j) (14-115)

04 =3(ij4 12+ Vij-1/2)

Clearly many other variants can be defined and the precise method adopted

has been found to have little influence on the results (Jameson, 1976) if the
order of accuracy is maintained. -

14.1.2 Curvilinear mesh

In practice, one seldom has Cartesian meshes, but instead one attempts to adapt
the mesh to the geometry of the flow configuration via various mesh generation
techniques,

Figure 13.4.3 is an example of a numerically generated mesh for a cascade
and Figure 14.1.3 provides some typical topologies for isolated airfoil
geometries.

In order to apply a finite difference discretization on a general mesh, the lines
are considered as forming a set of curvilinear coordinates ¢*(¢, n). The coordinate
transformation laws §=¢(x,y), n= n(x,y) generate a mapping of the physical
space (x, y) to a computational domain (£, 1) where a Cartesian mesh is set up
(Figure 14.1.4).

By writing the potential equation in the curvilinear coordinate system (¢, 1),
equation (E13.1.2), it can be discretized directly in the Cartesian computational
space (&, 7).

The following two-dimensional scheme js a direct generalization of the
Cartesian finite difference scheme (14.1.1), with Al=Ap=1:

U | A%
5g<p7>,.-+1/2,j+6,,“ <p7),.’j+1/2=0 ) (14.1.16)
The contravariant velocities are defined by the relations of Example 13.1.1 and
can be discretized as follows.

UH‘ 1/2,i=gil:l/2,j6; ¢ij +gil-fl/2,j.u¢5; ¢1+1/2,j
=gi1‘:1/2,j(¢i+ 1,;— i)
+ %gil-fllz,j(¢i+l,j+l + ¢i,j+1 — &y 1,j~1— ¢.~,j-1) (14.1.17)
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Physical space Computational space

A A

i+l

Figure 14.1.4 Mapping from the physical space (x, y) to a computational domain (&, n)

and

Viity2= glzll"' 1/2l‘n5¢- ¢i,j+ 12t giz,j2+ 1/;_»‘5,,+ b (14.1.18)

Similar formulas are easily derived for the other components (see Problem 14.2).

Example 14.1.2  Discretization of metric coefficients

An interesting way of discretizing the metric coefficients is based on a representa-
tion of the mapping x(&, ), (&, 1) on a cell-by-cell basis and considering locally
a bilinear isoparametric transformation compatible with second-order accuracy.
This particular transformation is used to compute the coordinate derivatives
appearing in the metric coefficients.

In Scheme (14.1.16) the metric is required at the mid-points (i + 1/2,j) and
(,j £ 1/2). If A,B,C,D are the centres of the four cells surrounding mesh point
(i,j) (Figure 14.1.4), the metric coefficient at (i + 1/2,j) can be defined by
averaging the values computed first at points A and B.

Considering point B within the quadrilateral 1234, the isoparametric trans-
formation with bilinear shape functions N,(¢,#) is written as

4
X = Z X;N(&n) (E14.1.3)
=1
with

N @) =31 + &)1 +nmy) (E14.1.4)

where I =1,2,3,4 and &, range from — 1 to + 1 following the standard finite
element representation of Table 5.1 in Chapter 5, Volume 1, with &, = + 1,
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n; = + 1. This representation corresponds to a local ¢, 5 coordinate system
centred in point B with an overall variation A = An = 2.
Derivatives such as x,, x, are computed from

Xg= sz% 1Y+ mg (E14.1.5)
1 ¢ 41 P
ON, 1
Xy = sz—a—’ =-Y x,(1+ &), (E14.1.6)
1 n 4 1

where the sum ranges from 1 to 4 over the four nodes of the considered element.
At the centre B(¢ = 0, n = 0) of element 1234 the following discretization formulas
are obtained:

Xa Xy —Xa=Xy (E14.17a)

Xelg = 2
x,,l.;=x’+x‘;x’—x‘ (E14.1.7b)
which can be written as a finite difference formula for point B
x§|B=.u.,0'§x.-+1/2,j+ 172 (E14.1.8a)
x,,|B=u¢5,,xi+ 1/2,j+1/2 (E1418b)

Similar relations are derived for the other derivatives. With the relations of
Example 13.1.1, one has

2 2 .
g =24y =t (E14.1.93)
XeYnq— Xy
912 = — J(xgx, + yey) = LAt I (E14.1.9b)
XV — XtV
and

11 11
giti2y= g%‘-"’— (E14.1.10a)

12 12
9id125= gﬁ% (E14.1.10b)

14.1.3 Consistency of the discretization of metric coefficients

Generally, the metric coefficients will be evaluated in the computational plane
(¢,n) through the relations of Example 13.1.1, and particular care has to be
exercised in the discretization of these relations in order to avoid the introduction
of systematic errors, which would appear as numerical mass sources. In
particular, the consistency of free-stream or uniform flow conditions must be
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ensured numerically, that is equation (14.1.16) with (14.1.17) and (14.1.18) must
be satisfied identically by the numerical discretization for a uniform flow field Ty

Written out explicitly, this implies, in two dimensions with U, ¥, being the
contravariant components of v,

E(Em_uw) +i("w"°°> -0 (14.1.19a)
N\ J o\ J
or
0 Gta T 00)P | O (o H M0l _ (141 g1
. 0 J on J

where u,, and v, are the Cartesian components of 7 .
If A; and A, represent the selected finite difference discretization operator of
the mass flux derivatives, this equation is discretized in the scheme as

7 , 7 =0 (14.1.20)

Since u,, and v, are to be considered as independent constants, the following
equations, which are algebraic identities, have to be satisfied by the discretiza-
tion. With £, and n, computed via relations (E13.1.8), one has

Ady,)—~A,(y)=0  oranalytically  y, =y, (14.1.21)
and
Al —x,)+A,(x)=0 or analytically Xen = Xpe (14.1.22)

The metric coefficients are not necessarily estimated via the same difference
operators as applied to the flux components. If one denotes by A7 and A7 the
difference operators applied for the metric coefficients, the above condmons
1mply that the two sets of difference operators have to commute. More precisely,
one should select A,, A, A7, A"‘ such that

AATY — AATY;=0 (14.1.23)

and similarly on x.
If both operators are obtained from second-order central differences, this
condition is satisfied since

Amyu z(yu+1 yi.j-l)
and
AAY Y =8:6,y;
= %(,VH tj+t —Yi-1j+1 —Yier,j-1 T Vi-1,j- 1) (14.1.24)
= A"A?y”

However, this is not true in general. For instance, if one-sided, backward
formulas are applied for the fluxes and central differences for the metric, one
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obtains
(A;‘A;,n - AnA?).Vu = (5; 5., - 5,,_ 5{)}’-'1 _
= %(yi,j+l “Vij-1 7 Vi-1,j+1 +¥i-1,j-1) (14.1.25)
—%(Y(ﬂ,j—)’in,j—l —Yi—l,j+yi—1,j—1)

which is clearly different from zero (see Problems 14.3 and 14.4).

The situation is still more complex in three dimensions, where one would
have, instead of (14.1.21) and (14.1.22), with coordinates ¢, 1,{ (refer to
Problem 13.9),

Ad(yyzy — Yizg) — AgVezy — Vizd+ Az, — 2 =0 (14.1.26)

with two other similar relations.

Contrary to the two-dimensional case (14.1.24), this relation is not satisfied
for central differences (see also Problem 14.5).

In general, the error introduced by the non-consistency of the metric
discretization is small for smoothly varying meshes, remaining of the order of
the truncation error of the difference operators used. However, when the mesh
cells are highly distorted or in regions with large mesh spacings, this error can
have a significant effect on the accuracy of the computation.

A detailed investigation and analysis of the conmsistency of metric
discretizations with regard to potential flows, including additional requirements
with regard to the consistent estimation of free-stream density and velocities,
is to be found in Flores et al. (1983).

A simple and effective way to cancel any remaining consistency errors due
to metric discretizations consists in substracting the free-stream equation
(14.1.19) from the basic equation, when both are of course discretized in the
same way (Pulliam and Steger, 1980). Hence one discretizes instead the equation

0 Y 0 K _i puoer i paoVao
w05 a7 (7o) () o

This procedure is recommended for all finite difference codes operating on
non-Cartesian grids.

14.1.4 Boundary conditions—curved solid wall

The implementation of the boundary conditions is straightforward for the
Dirichlet conditions as well as for the Kutta condition. The Neuman boundary
condition p(d¢/dn) = 0 is most generally implemented by a one-sided difference
along the corresponding boundary. Various forms can be given to this
implementation and one of the most accurate methods, with second-order
schemes such as equation (14.1.3), is obtained by the reflecting boundary
condition. Along the boundary corresponding to the plane coordinate surface
j=1 (Figure 14.1.1), this condition is expressed by

(pV);,12= — (PV); 37 (14.1.28)
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This leads to a contribution to equation (14.1.3) along j=1 of

2
’A‘;}; Pi32(@i2 — i) (14.1.29)

instead of the complete expression for the second y derivative applied in equation
(14.1.3).
If the solid wall is curved, the condition of vanishing normal velocity is
expressed by the corresponding contravariant velocity component being zero.
Referring to Figure 14.1.4, for a boundary defined as a n = constant line, the
contravariant velocity V is normal to the solid wall and hence is set to zero:

V=0 along the solid wall boundary (14.1.30)

A more precise formulation is to express the corresponding mass flux as zero,
that is

—=0 (14.1.31)
which can be discretized by a reflecting boundary condition leading to

(ﬂ) _ _<£K) (14.1.32)
J i,1/2 J i,3/2

The velocity has to be estimated in order to obtain the density and one might
use the wall velocity for the density at point (i, 1/2). A more accurate boundary
condition formulation can be obtained from the condition of vanishing vorticity,

J1

j+1

i-1 i i+l

Figure 14.2.1 Finite volume discretization in physical space
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which relates the normal velocity gradient to the wall curvature R,,.

o__o (14.1.33)
on R

w

where v, is the local velocity component tangent to the wall boundary and d/dn
denotes the derivative in the direction normal to the wall.

For a boundary formed by a j-line on Figure 14.1.4, for instance the line
(j=1), the direction of positive values of n is towards the inside of the flow
domain, and the radius of curvature is defined as positive.

This relation can be used to estimate a velocity magnitude at (i, 1/2) by an
appropriate extrapolation of (v)); ; to (v);, 1,2

142 FINITE VOLUME FORMULATION

Finite volume methods have the advantage of allowing a direct discretization
in the physical space, for arbitrary mesh configurations, without the necessity
of an explicit computation of metric coefficients.

Since one discretizes directly the integral conservation laws over a control
volume cell, errors connected to the free-stream consistency requirements
discussed in the previous section should also be strongly reduced if not
eliminated.

Referring to Figure 14.2.1, we consider the element ABCD as attached to the
mesh point (i,j). The mass conservation law is integrated as follows:

§ F-dS=0 with F =p7=pVo (14.2.1)
ABCD

or
(F'S)AB+(F'S)BC+(F'S)CD+(F.S)DA=0 (14.2.2)
where the surface vectors all point outwards.

The four fluxes can be evaluated directly in physical space, referring to
Chapter 6 in Volume 1,

(F-S)ap=(p7"S)ap =[puAy — vAx)]4s (14.2.3)

If the control volume ABCD is referred to a local &, 5 coordinate system, then
the equivalence of the discretizations (14.2.3) with (14.1.16) can easily be seen
from the direct application of the relations of Example 13.1.1.

Considering transformation laws & = £(x, y), n = n(x,y) with the side AB of
unit length in the n direction, that is An,g =1, one has

Upp = (u+ & )ap = [J(yu — x,0) 1as
=[J(uAy —vAx)] (14.24)

Hence, comparing with (14.2.3),

(F-5)an = (675)p = (p%) (1429)
AB
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Actually 1/J is a measure of the area of the element ABCD, when AB is
considered of unit length along the # axis.
This shows that the integral conservation law (14.2.2) can be written as

Sas—fco+ 98— 9gpa=0 (14.2.6)
where f and g are the &7 components of the flux vector F, that is
U |4
=p— =p— 14.2.7
f=p 7 9=r5 ( )

It appears, therefore, that the finite volume method can be considered as a
finite difference method applied directly in the computational space if the flux
components are evaluated in a similar way. It is easily seen that the finite
difference discretization (14.1.16) is identical to the finite volume approach if
fas=(F -S)ap is defined as the mid-point value f;, , , ; (see Problem 14.6).

A large number of possible finite volume methods can be generated, according
to the choice of the control volume ABCD and, for a given control cell ABCD,
according to the way the flux components are evaluated on the cell faces; see
Chapter 6 for a presentation of various options.

It is recommended to the reader to investigate a large number of formulations
in order to become familiar with the definition of finite volume discretizations
{see Problems 14.7 to 14.14).

14.2.1 Jameson and Caughey’s finite volume method

In the approach developed by Jameson and Caughey (1977) for two- and
three-dimensional flows, and applied to various configurations by Caughey and

&—
1 q 1

L

Figure 14.2.2 Computational molecule for the scheme
(14.2.11)
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Jameson (1979, 1980), the flux at the faces is obtained from the average of the
corner values. For face AB, '

and similarly for the other faces.
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(b)

—028

Figure 14.2.3 (a) Pressure distribution and (b) iso-Mach lines for the potential
flow on an NACA 0012 airfoil at 10° incidence and upstream Mach number of
0.3. (From Salas et al., 1983)

When applied to the form (14.2.6), the sum of the f components (f4p —fcp)
becomes

Sa +fn_fc+fo

fAB —fcn= 2 2
= %(fn 1/2,j+1/2 +fi+ 1/2,j-1/2 _fi—l/2.1+ 1/2 _fi— 1/2,j—1/2)
= “"5¢f|1 (14.2.9)

This leads to the scheme, written in the two-dimensional computational space,
for Ab=An=1:

(a0 f + 16,9 ;=0 (14.2.10)
or

MnOg fiv1jajt 1e0y i je12=0 (14.2.11)

showing the difference with the finite difference formula (14.1.16).

The velocities, densities and metric coefficients at the points A,B,C,D are
computed by equations (14.1.9) to (14.1.11).

This scheme is more compact than (14.1.16) and requires only one density
evaluation per computational cell (point B for cell 1234 of Figure 14.2.1).
However, a consequence of this compactness is that the even and odd numbered
points are decoupled from each other and a tendency towards oscillatory
behaviour of the solutions has been noticed; refer to the discussion in Section 4.4
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in Volume 1. This can be seen from the application of scheme (14.2.11) to the
incompressible form of the potential equation, which would lead to the molecule
shown in Figure 14.2.2 for the Laplace operator. The set of points E,F,G,H is
not connected to corner points and two different error levels could subsist (see
Problem 14.7). This can be corrected by the explicit addition of recoupling terms
and we refer the reader to the original references and to Caughey and Jameson
(1982) for the details of this procedure.

Other finite volume schemes can be defined following various options
described in Chapter 6 in Volume 1.

An interesting finite volume approach, worth mentioning because of its
simplicity, has been developed by Wedan and South (1983), defining a Cartesian
mesh, with a particular treatment of the boundary cells which are cut by the
solid walls.

Practical example

Figure 14.2.3 shows the pressure distribution and the iso-Mach lines obtained
with the Jameson and Caughey method for the subsonic flow on an NACA
0012 airfoil at 10° incidence and M, = 0.3 (Salas et al., 1983).

143 FINITE ELEMENT FORMULATION

The first application of finite element methods to potential flows were developed
by Argyris et al. (1969) and De Vries and Norrie (1971) for incompressible flows
and Thompson (1974), Periaux (1975) and Shen and Habashi (1976) for
compressible, subsonic flows. These authors apply various elements, linear or
quadratic triangles, bilinear and biquadratic quadrilaterals with either the
potential function or stream function formulations for two-dimensional
problems. Other earlier applications have been developed by Hirsch and Warzee
(1977) and Prince (1978) for subsonic cascade flows in two dimensions and by
Laskaris (1978) for three-dimensional potential flows in the subsonic range. For
transonic flow computations, finite elements were used initially by Glowinsky
et al. (1976), Ecer and Akay (1976), Eberle (1977), Deconinck and Hirsch (1979,
1979b) and Habashi and Hafez (1982). An account of the evolution of transonic
finite element computation methods can be found in Hirsch and Deconinck
(1982).

As discussed in Chapter 5 in Volume 1, the application of the finite element
method requires the definition of an integral formulation to initiate the
discretization. For subsonic applications, and for many transonic methods, the
weak Galerkin formulation, equivalent to Bateman’s variational principle, is
the best appropriate choice. However, in order to treat the problems of the
supersonic regions, other variational formulations can be defined. One
alternative, which has been strongly developed, is the least squares or optimal
control approach (Glowinski et al., 1976; Glowinski and Periaux, 1983). Various
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other variational formulations have been attempted and the interested reader
will find a review of these attempts in Hafez et al. (1978).

The simplest method is still the weighted residual or weak formulation coupled
to a Galerkin method, and we will follow this approach in this section.

14.3.1 The finite element—Galerkin method

With interpolation functions N,(X) attached to a mesh point J, the weak
formulation (13.5.1) becomes, with W = N,(x),

- f pV-VN,-dQ + f gN,d'=0 (14.3.1)
Q r

where I is the part of the boundary where the Neumann condition

PPn=q (14.3.2)

is imposed.
With the finite element representation

o= ZI: ¢, N,(X) (14.3.3)
one obtains
- 213 ér f pVN,VN,dQ + f gN,dI' =0 (14.3.4)
Q r
The stiffness matrix
K,,=I pVN,VN,dQ (14.3.5)
Q
is non-linear and the system
Kydr=4q, (14.3.6)
where g,
ql=f gN,(x)dl’ (14.3.7)
r

has to be solved iteratively.

Note that the subscripts I, J correspond to mesh point or node numbers in
a general triangulation of the space domain Q. If a mesh is generated by families
of lines as in finite difference discretizations, where each mesh point lies on one
line of each family, then each node number I corresponds to a set (i, j) in a finite
difference notation.

One of the most commonly used elements next to the linear triangles (or
tetrahedra) is the bilinear (or trilinear) element with four node quadrilaterals
(or eight node bricks) because of its good compromise between simplicity and
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i-1 i i+l

(a) linear (b) bilinear

g i1

(c) biquadratic

Figure 14.3.1 Elements contributing to the equation for node J(i, j)
are in shaded area

accuracy. This element gives a second-order accuracy for the potential function
and is therefore equivalent to the use of second-order difference formulas.
However, second-order elements, such as quadratic triangles or quadrilaterals,
are also applied, when third-order accuracy is required (Deconinck and Hirsch,
1980; Chen, 1982). In this last reference, third-order isoparametric elements are
actually used to improve a finite difference discretization.

The integration domain Q; attached to node J is defined by the region around
J in which the interpolation functions N; are different from zero. Since these
functions have local support only, this implies that only the elements which
contain the node J will contribute to the integral over Q;. An example is shown
in figure 14.3.1, where the shaded areas represent the domain Q;. For bilinear
elements, eight surrounding points will contribute to the discretized equation
at node J, while 25 nodes will contribute for biquadratic elements and six for
linear triangles.
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The integrations in equation (14.3.4) are performed numerically by Gauss
point integrations (see Chapter 5 in Volume 1). Note that with the exception
of the density, the other factors of the stiffness matrix are only dependent on
the geometry and the chosen elements. Therefore an important simplification
and reduction in the computational work is obtained if the density is assumed
constant over an element, equal for instance to its value at the centre of the
element. This leads to

(© Q) ¢

where the summation extends to all the elements Q5 contained in Q;. Hence,
for each element (e), the elemental stiffness matrix K has to be computed only
once and can be stored for its use during the iterative process. For linear triangles,
this procedure is an exact one since the velocity is constant over each triangular
element and so is the density. In general, the density at the centre of the element
will be evaluated through the central value of the velocity. For instance, for
quadrilateral elements,

2
72=Vgl2=

Y 6,VN,(0,0) (14.3.9)
I

since the origin of the local coordinate system is the centre of the quadrilateral
and where the summation extends over all the nodes of the element. For instance,
in element 1234 of Figure 14.3.1(b), the summation extends over the four nodes
1,2,3 and 4.

It is instructive to compare the computational molecules obtained on an
orthogonal mesh with these assumptions, using finite elements with linear
triangles and bilinear quadrilaterals, and the corresponding molecules obtained
with second-order finite difference discretizations. Figure 14.3.2 illustrates the
configurations obtained where the notation p, indicates the constant value of
p in element i. It is seen that with bilinear elements the residual at the central
node depends on all the surrounding nodes, including the corner nodes. This
is not the case for the finite difference formulation, which is closer to a
discretization as obtained from linear triangles and actually identical to it for
the Laplace equation corresponding to incompressible flow (see Problems 14.12
to 14.14).

The computational molecules in Figure 14.3.2 are obtained from equation
(14.3.8) either by an exact integration or by a Gauss quadrature formula, with
two or more points. If an approximate, one-point Gauss formula is applied
with bilinear elements, an explicit calculation would lead to

K=Y p Qs +nm)® (14.3.10)
(e)

with £;,&;,np, 1, being equal to + 1. For the potential equation, this leads to
the scheme given by Figure 14.3.3, with the corresponding scheme for the
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Figure 14.3.2 Comparison of computational molecules from bilinear and triangular elements,
for compressible and incompressible potential flows
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Figure 14.3.3 Computational molecule obtained with equation (14.3.10)

Laplace equation. This scheme is actually identical to the finite volume scheme
of Jameson and Caughey introduced in Section 14.2.

Practical example

An example of a finite element subsonic computation performed for a turbine
cascade is shown in Figure 14.3.4. A finite element Galerkin method was used,
with biquadratic interpolation functions as developed by Hirsch and Warzee
(1977). The mesh is shown in Figure 14.3.4(a) and Mach number distributions
are displayed in Figure 14.3.4(b).

14.3.2 Least squares or optimal control approach

This approach has been developed by Glowinski et al. (1976) for transonic flow
computations and is extensively applied in the French aeronautical industry
(Bristeau et al., 1980; Glowinski and Periaux, 1983) as an alternative to the
Galerkin formulation. We refer the reader to these references for more details.

144 ITERATION SCHEME FOR THE DENSITY

The evaluation of the density is an essential aspect in potential flow
computations since it contains the full non-linearity effects of the flow. The
simplest approach is a linearization method whereby the density is calculated
from the known values of the velocities obtained at the previous iteration.
Symbolically this would lead, if n indicates the iteration number in an iterative
procedure, to the formulation

V-(p"V¢*1)=0 (14.4.1)
where _
p"=p(IV¢"?) (14.4.2)

Some authors call this method Taylor linearization (Shen, 1978; Caspar, 1980)



(a) Typical blade-to-blade

Finite Element geometry for a
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INLET MACH NUMBER = .2675 OUTLET MACH NUMBER = .7500

(b) Iso - Mach lines

Figure 14.3.4 Subsonic potential flow through a turbine cascade
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and in the finite element literature it is called the secant stiffness method
(Section 12.4 in Volume 1). This approach is the most widely used, in subsonic
as well as supercritical flow situations.

A Newton method to handle the non-linearity can also be considered,
following equation (12.4.3). The Jacobian matrix can be computed analytically
in this case, and one obtains the following iteration scheme with dp=¢"*1 — ¢~
Writing formally

K;8¢=—V-(p"V¢")= — R" (14.4.3)
the Jacobian operator K ; is computed as follows. Newton’s method is written as
Vet V" ) = V-[(p" + 5p)V(¢" + 64)]
=V:(p"Ve¢") + V-(0pV ") + V:(p"Véd) =0 (14.4.4)

where the higher-order term containing products of dp and 8¢ has been
neglected.

Introducing equation (13.5.7), with ¢, =0 for a steady formulation, the dp
term becomes, with 7 =V ¢,

V-(0p V)= V(uap)_-v[ (UCJ—)]_—V-[,;?—(”:—Z)@] (14.4.5)

and

K 0¢ = V-(p"Vig) + V-(5pV ")

=V-p"[V LA, V)] ¢ (14.4.6)
The Newton operator can be written in Cartesian coordinates:
Kr=0,[p(6;;— M;M))o;] (144.7)

which, written out explicitly in two dimensions, becomes

u? uy uv v?
KT=6x|:p<l —C—2>ax]—ax[pc—20,:|—ay[pc—zay]+ay[p<1 —?>ay]

(14.4.8)

This method is rarely used, however, due to the increased computational cost
involved in the evaluation of the Jacobian matrix K. It has been applied by
Prince (1978) and Laskaris (1978) to two- and three-dimensional subsonic
potential flows. It has exceptionally been applied to transonic potential flow
computatlons but an analysis of the properties of equations (14.4.3) and (14.4.6)
is most instructive. It reveals the source and the nature of the problems connected
to the transition from subsonic to supersonic flow regimes. Indeed, one can
consider that for sufficiently small variations 3¢, any iterative method, even a
linearization (14.4.1), will actually be an approximation to equation (14.4.3),
which contains all the effects of the density variations.
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Therefore, the properties of equation (14.4.3) are representative of the
properties of the non-linear potential equation. The structure of the Jacobian
operator is closely related to the structure of the non-conservative form of the
potential equations (13.2.5), as can be seen from a direct comparison with
equation (14.4.7). However, it is also related to the expression appearing in the
second variation of the pressure functional, equation (13.5.12), and both provide
indeed the same information.

In order to analyse the Jacobian operator, let us consider its eigenvalues for
a wave-like solution of the form of a Fourier mode

5 =b¢e (14.49)

where ¥ is a wave-number vector in space of components (K., k,, k,) and d¢,
a constant dependent on the boundary values.

Introducing (14.4.9) into equation (14.4.6), one obtains, for the left-hand side
operator, at fixed p”, the eigenvalue equation

Kid¢p=—p [“2 @ f) ]6¢> (14.4.10)

Hence, the eigenvalues A, of the Jacobian operator of the potential equation

are given by
2
A= _pn[zz (%) ] (14.4.11)
C

For incompressible flows, ¢ — oo and one recognizes the eigenvalue — k2 of
the Laplace operator for Fourier eigenmodes.

The expression between brackets in (14.4.11) is identical to the left-hand side
of the characteristic condition (13.3.8), and also to the expression defining the
second variation of the pressure functional (13.5.12). All three approaches do
express the same information with regard. to the influence of compressibility.

One has therefore the following properties:

(1) For subsonic flows, A, is always negative and the operator (— K ;) is positive
definite.

(2) Zero eigenvalues will appear for supersonic flows, making the operator
K, singular, for directions ¥ lying on the cone of normals defined by
equation (13.3.8).

(3) For supersonic flows, the eigenvalues A, change sign and become positive
for directions ¥ inside the cone of normals, that if for time-like vectors .

It is seen that the second term dominates the first in this case as a
consequence of the dominating contribution from the density variations
(14.4.5). This is another expression of the fact that in supersonic flows the
variations of density have a stronger influence on the flow properties than
the velocity variations.

(49 When the ¥ directions are outside the cone of normal, that is for space-like
directions, the eigenvalues remain negative and ( — K ;) will remain positive
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definite. In this case, since ¥ is normal to the wave-front surface 6¢, the
potential variations remain inside the domain of dependence (see Figures
13.3.2 and 13.3.3).

These properties reveal that the Jacobian (— K;), which is positive definite
in the subsonic flow regions, can become singular and non-positive definite in
the supersonic domains. This makes equation (14.4.3) ill-defined, and unless a
resolution algorithm can be devised to handle non-positive definite operators,
one has to define a numerical formulation based on positive definite operators
able to handle the above properties.

The alternatives are indicated by equation (14.4.10):

(1) Attempt to avoid the singularities of Ky, that is discretize the potential
equation in a way that prevents the eigenvalues of K from becoming zero
or changing sign.

(2) Define an iterative scheme P such that P~ 'K does not generate negative
eigenvalues when 4, is positive. Remember that P should have negative eigen-
values in order to be considered as conditioning operator (see Section 12.4
in Volume 1).

The replacement of equation (14.4.3) by a preconditioned system Pé¢ = — R",
where P is an elliptic operator, is currently applied for subsonic problems (see
also equation (14.4.1)). With p” fixed, P is equal or very close to a Laplace
operator, and this is a very effective method for subsonic problems. However,
the same method will tend to diverge in the presence of supersonic regions,
since the eigenvalues of K, can become positive. As a consequence, the corres-
ponding eigenvalues of the amplification matrix

G=1-P 'K, (14.4.12)

will become larger than one.
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PROBLEMS

Problem 14.1

Express the velocity components at the corners ABCD of the computational cell of
Figure 14.1.1 as a function of the potential values at the mesh points, following equations
(14.1.10), by applying (14.1.4) and (14.1.5). Draw the corresponding computational
molecules for the two velocity components. Repeat the calculation by applying (14.1.4)
with (14.1.6).

Problem 14.2

Write the equations (14.1.17) and (14.1.18) for the velocity components at the points
(i—1/2,j) and (i,j — 1/2) and write out explicitly the scheme (14.1.16) for ¢;;. Determine
the coefficients of the computational molecule.

Problem 14.3

Show that a central differencing of the Jacobian matrix coefficients at the mesh points,
followed by an averaging to obtain the values at mid-side points (i + 1/2,j) and (i,j + 1/2),
does not satisfy the consistency relations (14.1.23) when the flux difference operators are
defined by equations (14.1.16) to (14.1.18).

Hint: Coefficients such as x,, x, are discretized by
—Xx
2

X4y -1

(x;)u = 5{".’1 =

- Vijer=Yis-
(yq)u=5.,)'u=—"¢‘-—2—y-“—‘
and

()i /2, = BelX)is12,5= HCAMN wt (xgyl
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Problem 14.4

Show that the metric discretization defined in a way similar to the difference expressions
of (14.1.18), namely a different discretization dependent on the mid-cell point location,
for instance:

m — St
A7 X412, = 9 Xij
m p—
AT Xy 172,5= PeOnXiny .y

ATY;je 12 = a0 s 1p2
m +
AYijer2=9y Vi
satisfies the consistency condition for the scheme (14.1.16) to (14.1.18).

Problem 14.5

Verify by an explicit calculation that the three-dimensional consistency condition (14.1.26)
is not verified for central difference operators on the flux components and on the metric
coefficients evaluated at mesh point ijk. Show also that if the central operators on the
metric are replaced by central differences averaged in the associated direction the
condition will be satisfied.

Hint: For instance, for the first term in equation (14.1.26), associated with £, one replaces
the central difference

0002y — 00,002,
by the averaged form, with jiw; =5 (u,,  +u,_,)=31(6" + 6 7 )u;,
ﬂcanyijk'ﬁn‘sczijk - ﬁ’ls-lyi k'ﬁz‘suziju

The other terms are obtained by cyclic permutation.

Problem 14.6

Show that the finite volume formulation (14.2.2) is identical to the finite difference
discretization (14.1.16) with the choice

Sfas= (F'g)u =f;+1,2'j

Problem 14.7

Obtain the computational molecule for the scheme (14.2.11) and prove Figure 14.2.2 for
an incompressible flow on a Cartesian mesh.

Problem 14.8
Apply the scheme (14.1.16) to the flow around a cylinder in polar coordinates (r, 6) and
solve for an incompressible flow as well as for an incident Mach number of M, =0.2.

Hint: Define a mesh formed by circles and radial lines, taking £ =r, n = 0. Solve the
algebraic system with a relaxation method or a direct method. Compare with the exact
incompressible solution ¢(r,8) = U, (r + a%/r)cos 8 for a cvlinder of radius a.

Problem 14.9
Repeat Problem 14.8 for the scheme (14.2.11).
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Problem 14.10

Apply a finite volume formulation to the cell 1234 of Figure 14.2.1 and develop the
scheme for a Cartesian mesh.

Define u,v,p at the corners of the cell, that is at (i,j), (i + 1,j), etc., but define the
potential function at the cell centres, that is at (i + 1/2, j + 1/2) for cell 1234 (Doria and
South, 1982).

Hint: Define the fluxes at the cell face centres, that is at (i,j + 1/2) and (i + 1,j + 1/2) for
the f component and at (i + 1/2,j) and (i + 1/2,j + 1) for the g component. Define also
the velocities by second-order central differences, such as

u =¢i+1/z,1+ 1/2"¢t-1/2,}+1/z
Li+1/2 Ax

Show that, in the incompressible case, one obtains the five-point Laplace operator centred
at point B, and compare with the finite difference scheme (14.1.1).

Problem 14.11

Apply the scheme of the preceding problem to the flow around a cylinder, with various
formulas for the evaluation of the density. Solve, by direct methods, for an incident flow
at Mach number M, = 0.2 and for an incompressible flow.

Problem 14.12

Compute the stiffness matrix elements on a rectangular mesh for bilinear elements for
the potential equation. Do the explicit exact integrations for each element and obtain
the molecule of Figure 14.3.2(a).

Hint: Take
N;= %(1 + &6 +mmy)

oN oN ON,; ON dédn
= ¥ e 2y g
Ku=2r J[( T )( 6§)+<6n on )]Ax'AyM

Problem 14.13

Perform the same calculations for linear triangles on a rectangular mesh. Prove the
molecule of Figure 14.3.2(b).

and apply

Problem 14.14

Apply the finite element—Galerkin formulation to the flux form of the potential equation
on linear triangles, and show that one obtains a finite volume formulation for the control
volume ABCDEF of Figure 14.3.1.

Define the formulas to be applied to the potential derivatives in order to obtain the
molecule of Figure 14.3.2(b).
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Hint: Calculate, with f = pu= p¢,, g = pv = p¢, as components of the flux vector F,

I (V-F)N,dQ = —j (F'V)N,dﬂ+§ F,'N,dl'
Q f¢] r

= —J <I%+y%>dn+§ F,N,dI
a ax dy r

and show that one obtains the expression

Y (fAy—gAx)=0

sides

using the relations to be found in Chapter 5 in Volume 1.

Problem 14.15

Derive the complete expressions, as a function of the mesh point coordinates, of all the
metric coefficients in Example 14.1.2.

Show that these metric derivatives based on a local isoparametric finite element
representation with bilinear interpolation functions do not satisfy the metric compatibility
conditions (14.1.23) when applied with scheme (14.1.16).

Show that they do satisfy the metric compatibility conditions (14.1.23) when applied
to scheme (14.2.11).

Problem 14.16

Solve the small disturbance potential equation (13.2.11) for a 4% circular arc airfoil and
a cartesian mesh for incident Mach numbers of 0.2 and 0.4.




Chapter 15

The Computation of Stationary
Transonic Potential Flows

As pointed out in the previous chapter, the standard solution methods for
subsonic potential flows break down when the flow becomes supersonic. This
results from the transition of the potential equation from elliptic to hyper-
bolic type, indicating that the flow changes from a diffusive character to a
propagation-dominated behaviour. Consequently the typical elliptic numerical
operators will not be able to simulate correctly the propagation properties of
the supersonic flow regions. This shows up in the properties of the Jacobian
matrix K for a Newton iteration on the density, which ceases to be positive
definite, or in the fact that the matrix of the coefficients of the algebraic system
of the central difference potential equation ceases to be diagonally dominant
for supersonic flows. These are various illustrations of the same difficulties and
the supersonic region will require an appropriate treatment. Moreover, the
specific field of transonic flows, with mixed supersonic and subsonic regions,
has the additional complication that the sonic transition line between the two
regions is unknown and is part of the solution and that the transition from
supersonic to subsonic tlow can occur through a shock discontinuity which has
also to be computed. Figures 15.1.1 and 15.1.2 show typical transonic flow
configurations for an isolated airfoil and a more complex channel flow with
supersonic inlet and subsonic outlet flow.

Therefore, the following steps have to be considered for transonic potential
flow computations:

(1) Define an appropriate discretization in the supersonic regions which takes
into account the existence of domains of dependence of the flow properties
limited by the characteristics of the hyperbolic equation.

(2) Define an appropriate iteration scheme for the non-linear system of
algebraic equations which ensures that during the evolution towards the
converged steady state the computed solution remains within the proper
regions of dependence.

(3) Avoid the appearance of non-physical expansion shocks, which are also
solution of the isentropic potential equation.

Actually the introduction of the first step automatically ensures condition 3
57
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My, = 0.85
a=0°

Figure 15.1.1 Typical transonic flow configurations for an isolated airfoil. (From Shankar et al.,
1985)

so there are no particular measures to take for this step, once step 1 is ensured.
The reason behind this situation is that the introduction of typical supersonic
distretization methods leads to schemes which, when compared to the elliptic
central-type discretizations, appear as equivalent to the addition of an artificial
viscosity term added to the subsonic elliptic schemes. This explains also why
the resolution of step 1 is often referred to in the literature as the introduction
of artificial viscosity.

The first successful computation of a steady transonic potential flow was
obtained by Murman and Cole (1971) for the small disturbance equation in
two dimensions. This basic work marked a breakthrough that initiated
considerable activity in this field, giving rise to an extremely rapid development
which led, in about ten years time, to the situation where the computation of
transonic potential flows can be considered as a practically solved problem. A
large number of operational codes exist by now, which compute three-
dimensional transonic potential flows in a few seconds of CPU time on the
most advanced computers (Thomas and Holst, 1983).
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Figure 15.1.2 Typical transonic channel flow with multiple shock configuration; isentropic potential computation. (From Deconinck, 1983)
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The original idea of Murman and Cole consisted of using different finite
difference formulas in the supersonic, sonic and subsonic regions. As with many
ideas which appear simple afterwards, the original development required deep
understanding of the underlying problems both numerical and physical. It is
fascinating and instructive to read the historical account of the genesis of these
ideas, as reported by Hall (1981), and which we cannot resist quoting here for
our and, we hope, for the reader’s pleasure.

Earll Murman had been working for a year or so at Boeing on finite difference methods
for integrating the compressible Navier—Stokes equations when, in 1968, Julian Cole
arrived on a one-year visit. Cole writes: ‘it was Goldberg who suggested that transonic
flow was a timely subject. I decided on a joint analytical and numerical approach and
he said that Earll and I could work together (since my programming was feeble). Our
approach was founded on several bits of previous experience.

i) The fact that Lax-Wendroff could give the correct shock jumps (had) made a deep
impression and I (had) learned about artificial viscosity, diffusion and dispersion of
difference schemes. Yosh (Yoshihara) was convinced that steady flows could not be
calculated directly but I decided while at Boeing to try using a conservative scheme
(a la Lax) in order to catch shocks.

ii) T was aware of Howard Emmon’s very early ‘successful’ relaxation calculations of
mixed flows in nozzles and decided to try a relaxation method.

i) I had studied the fundamentals of small disturbance theory...rather extensively
earlier. I knew it had all the essential difficulties and could even be a good
approximation. It was clear that it would make the numerical work easier.

Murman writes that Cole

...spent several months systematically deriving a small disturbance theory from the
complete Euler equations.

It laid the theoretical groundwork for our later developments.

In January 1969 we started some computations solving Laplace equations and
then the TSP using centered finite differences. By April we found that we could not
get the calculations to converge for supercritical flow. It was in the following several
months that we hit upon the idea of switching and type dependent schemes. I believe
that the idea grew out of an afternoon brainstorming session when we were dis-
cussing finite difference methods for elliptic and hyperbolic problems and how the two
were basically different. Julian, I believe, threw out a comment that maybe we could
combine them somehow.

1 have often reflected back on that event to realise how important it is in research
to be open-minded, imaginative, and receptive to unconventional suggestions.

Cole adds:

I knew enough numerical analysis to know that hyperbolic schemes were unstable
if the domain of dependence was incorrect. Even though the time-like direction was
unclear I thought that perhaps we should have only downstream influence. So we
decided to switch schemes: explicit hyperbolic was ruled out by the CFL condition
near the sonic line.



61
Murman continues:

My experience the previous year on the Navier—Stokes computations allowed us to
make rapid progress. It was clear that we should maintain conservation form to calculate
shock waves. Unfortunately we missed the essential point of the shock point operator.
For stability reasons, the hyperbolic operator had to be implicit. This naturally led to
a line relaxation algorithm so that the method would work in the limits of both purely
supersonic and purely subsonic flow. In July we programmed up the first code and it
worked almost immediately.

After this initial work, Murman and Cole’s procedure was extended to three-
dimensions by Ballhaus and Bailey (1972), to the non-conservative full potential
equation for two-dimensions by Steger and Lomax (1972) and Garabedian and
Korn (1972), and for three-dimensions by Jameson (1974). The conservative full
potential equation was solved initially by Jameson (1975) for two-dimensional
flows and extended to three-dimensional configurations by Jameson and
Caughey (1977). Subsequently, improvements were introduced with regard to
the treatment of the artificial viscosity terms, leading to the concept of artificial
compressibility (Eberle, 1977; Holst and Ballhaus, 1979; Hafez et al., 1978). Also
an important effort was made towards the improvement of the convergence
rate of the iterative techniques.

The above-mentioned initial developments were based on line relaxation
iterative methods but Ballhaus and Steger (1975) and Ballhaus et al. (1978)
introduced variants of the implicit alternative direction ADI techniques, called
approximate factorization (AF) methods. These have been extended to the full
potential equation by Holst and Ballhaus (1979) and Holst (1979) and by Holst
(1980) for three-dimensional computations. Multi-grid acceleration techniques
were introduced by Jameson (1979) for finite difference methods and by
Deconinck and Hirsch (1981) for finite element potential flow discretizations.

151 THE TREATMENT OF THE SUPERSONIC REGION:
ARTIFICIAL VISCOSITY—DENSITY AND FLUX UPWINDING

The original scheme of Murman and Cole was based on the observation that
in the supersonic region, with the flow oriented in the x-direction, the central
difference operator does not respect the proper region of dependence. Indeed,
a central difference operator for the second-order derivative ¢,, at point P
(Figure 15.1.3)

Pro1y— 20+ 9 1
$Qliy=—121 Axizj =500y (15.L1)

would suggest that the solution in P(j,j) is dependent on a downstream point
{i +1i,j). This is in opposition to the physical properties of supersonic flows since
only the points located within the region of dependence of P can have an effect
on the flow properties at this point. Therefore, if a backward or upwind difference
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Figure 15.1.3 Region of dependence of P in supersonic flow

operator is used instead, at supersonic points, such as

-2
(x]i)l” = ¢i—2.] Atiz- 1, + ¢U = K.lx_zE; 162 ¢1] (15.1.2)

X

this would be in agreement with the physical reality of supersonic flow.

Hence, a type-dependent differencing is introduced whereby the derivatives in
the flow direction are upwind differenced. It is to be noted that the difference
formula (15.1.2) is a first-order approximation to the second derivative at point
(i,j) and hence, while the subsonic regions have second-order accuracy, the
supersonic regions have only first-order accuracy. This will be the case for most
of the transonic potential flow methods, although attempts to work with second-
order accurate upwind differencing have been developed.

15.1.1 Artificial viscosity—non-conservative potential equation
When the two formulas (15.1.2) and (15.1.1) are compared one obtains

® _ g0 Pirry =300 +3¢ 1~ s,
xXx sz

=¢'Q — Ax,ys (15.1.3)

where the difference expression is seen to be a formula for the third-order
derivative ¢,,..

Hence, the upwind differencing of Murman and Cole can be interpreted as
the addition of an artificial viscosity term proportional to Ax¢,,, = Axu,, to
the central differenced second-order derivative. Two equivalent points of view
can therefore be taken: either the streamwise derivatives are upwind differenced
in the supersonic regions or all derivatives are centrally differenced everywhere
but an artificial viscosity term is added to the equations.
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The form of the artificial viscosity terms are obviously not arbitrary, but, as
shown by Lax (1954) (see Section 21.2), any form of non-vanishing dissipation
will be sufficient to implement the entropy condition and exclude expansion
shocks. Therefore, the upwind differencing automatically adds an entropy
condition under the form of artificial dissipation terms proportional to the mesh
size. However, some care is required in order to prevent these terms vanishing
over a shock transition, where the flow changes from supersonic to subsonic
regime, or over a sonic point, where the inverse transition takes place.

When applied to the small disturbance equation, under the two-dimensional
form

(1-M*»¢,,+¢,,=0 (15.1.4)

an artificial viscosity term (1 — M?)Ax¢, ., for M > 1 is obtained and either we
write the scheme

(1-M?*»¢® + ¢‘y5’=0 (15.1.5)
or we introduce first the artificial viscosity term and discretize subsequently the
left-hand side centrally:

(1-M?*»9p© + ¢ = — Ax(M? - 1)¢,,, forM>1
=0 forM<1
In order to apply these concepts to the full potential equation, we have to take

into account the local flow direction and define an upwind differencing with
respect to the local velocity direction. Such a procedure has been introduced

(15.1.6)

Figure 15.1.4 Transformation between local streamline and
Cartesian coordinate systems (/,n), (x, y)
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by Jameson (1974) for the non-conservative form of the potential equations and
was termed the ‘rotated difference scheme’.

The potential equation can be written locally in streamline coordinates (I, n)
under the form

(1-M*)y+ ¢,y =0 (15.1.7)

where the local streamline coordinate system (I, n) is related to the Cartesian
coordinates by a rotation of angle «, with cosa = u/q, where g is the modulus
of the velocity vector v =q1;=ul +v1, (see Figure 15.1.4).

Hence, one has

. ul—vn
x=Ilcosa—nsina =
q
!
y=lsina+ncosa=v tun (15.1.8)
and applying standard transformation rules
WPy + 2uvd,, + 029,
du= )
q
24 2
o= B = Wby Uy, (15.0.9)
q

The rotated difference scheme consists in differencing all the derivatives
contributing to ¢,, centrally while the derivatives contributing to ¢, are upwind
differenced at supersonic points. For instance, equation (15.1.1) is applied for
¢, when used for the estimation of ¢,, while equation (15.1.2) will be applied
in the computation of ¢, for the same second derivative ¢,,. Similarly, the
other derivatives such as ¢,, are discretized centrally in ¢,, as

1

¢ = (OF +6,)(0; +4, )¢;j“—;gx5y¢ij

4AA

4AxAy(¢l+lJ+l ¢i+1,j—1—¢.'_1,1-+?+¢i_l_j_1) (15.1.10)

and in the upwind manner in ¢,, as

¢(B)=A—A-¢s (S ¢” (¢u ¢i—l,i—¢ivj_1+¢i_l'j—1)

=9 — _(,,m -V¢m (15.1.11)

These expressions are written for u > 0 and v > 0. If the sign of these components
is negative the upwinding direction has to be reversed. The corresponding
artificial viscosity terms can be obtained by comparing the upwinded expressions
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with the central differenced ones, and one obtains, with equations (15.1.3) and
(15.1.11), for u>0,v > 0,

u? v? uv
¢;?) = ¢;F) - ;Ax ¢xxx - ';{Ay ¢yyy - ?(Ax ¢xxy + Ay ¢xyy) (15112)

When all the terms are grouped, an artificial viscosity term (AVT) appears of
the form

AVT = iz(M2 —D[AX(W? ¢ x + uvh,,,) + Ay e,,, + wae,,,)] (15.1.13)
q

and the centrally differenced equation becomes
(1-M*)9{ + ¢ = AVT (15.1.14)

It is to be noted from equation (15.1.3) that the artificial viscosity terms must
be discretized in an appropriate way corresponding to their original derivation.
For instance, ¢,,, in equation (15.1.3) has to be upwind differenced as 8_ 62¢; j

x

and not otherwise. Similar conclusions appear when equation (15.1.11)is worked
out in detail. It is a general rule that the artificial viscosity terms have to be
differenced with formulas containing upwind contributions (see Problem 15.2).

Example 15.1.1 Murman and Cole method on the small disturbance equation

Consider the small disturbance equation for the perturbation potential @, in
the form (13.2.11):

[1-M%—(y+1)M20,]®,, + D, =0 (E15.1.1)

The discretization is performed on a Cartesian mesh for thin airfoils. Designating
by A the coefficient of the @, term, A, ; is obtained from a second-order central
difference of @_:

D, = Disr =Py (E15.12)
’ 2Ax
where the central discretization in the subsonic region would be, with Ax = Ay,
A(®,, ;— 20+ D )H(®, ., — 20+ ® ,_,)=0 (E15.13)
In the supersonic region, the first term is backward differenced:
Ay Q=20 ;+ D, )+(D, ., —20,;+D,;_,)=0 (E15.14)

The two equations can be combined with the introduction of a switch factor
#, such that =0 for subsonic flows or 4 >0 and u=1 in the supersonic
regions where 4 <0:

ﬂiin‘— l,j(q)ij - 2(1);'—1,1 + (bi—z.j) + (q)i,j+ 1 2(1)” + (Di,j— 1)
+(1 _#ij)Aij(d)Hl,j_2(b.'j+q)i—1_j)=O (E1515)
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This scheme is not in conservative form, since the switch coefficient is taken
at point (i, j) for the subsonic as well as the supersonic term. A conservative
form is obtained when p is taken at (i — 1,j) with the first term. In this case the
scheme can be written as, see Problem 15.9,

4,020, + 820, = A, 820, — iy A, 020,  (E15.16)

l iVx ijYx

The boundary condition (13.2.13) is introduced in the discretization via the
second y derivative of @ at points i, j = 1 of the airfoil surface on the x axis (see
Figure 13.2.1). Considering Figure 14.1.1 and a fictive point j = 0, symmetric of
i=1

53(1)1,'1 =0,,-20,, +@,, (E15.1.7)
The value at j = 0 is obtained by expressing the boundary condition as a central
difference

o,-0,,
=—b2  TLO_ E15.1.8
vi.l 2Ay fl ( )
and the second y derivative becomes
53(1)“ =2(,,— D, —Ayf) (E15.1.9)

15.1.2 Artificial viscosity—conservative potential equation

The expression (15.1.13) is not in conservative form and cannot be used for the
conservative potential equation, which requires that all the terms appear in
divergence form. Hence, one should be able to write the artificial viscosity terms
under the form of the divergence of a vector quantity,

AVT=V-A =A4,+B, (15.1.15)
in such a way that the potential equation becomes
V- (pVp+A4)=0 (15.1.16)

This equation would subsequently be centrally discretized everywhere in the
flow field, with 4 going to zero as the mesh size is reduced.

The method followed by Jameson (1975) was to adopt a form for A that
contained, to the highest-order derivatives of ¢, the corresponding terms of
equation (15.1.13), multiplied by the density p.

If one considers the first term of equation (15.1.13), the x-component of
equation (15.1.15) should contain the expression

Ax%(Mz - 1)(u2¢xxx + uv¢xxy)
and an obvious generalization is

Ax=[%(M2_ 1)(u2¢xx+uv¢xy)] Ax (151.17)
q

X
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The artificial viscosity terms are switched off for subsonic flows by the switching

function
1
u=max|:0,<l —F>] (15.1.18)

and the artificial viscosity terms of Jameson can be written, foru > 0,v > 0, as

A= %y(uzu, + uvv,)Ax (15.1.19)
c

B= c%;t(uvu, +v20,)Ay (15.1.20)

Applying equation (13.5.7) with ¢, =0, these expressions can be written in a
very convenient way as derivatives of the density p, since

p.= —:Lﬁ-g= —%(uux+vv,) (15.1.21)
o= =258 o P o)) (15.122)
c y c
and the artificial viscosity terms become
A = —plup AxT, +vp,AyT,) (15.1.23)

where the derivatives of the density are upwind differenced.

These terms are of first order and reduce the overall second-order accuracy
of the subsonic regions to first-order accuracy in the supersonic zones.
Second-order variants of the conservative artificial viscosity can be found in
Jameson (1976a) and Caughey and Jameson (1982).

1513 Artificial compressibility

The form of equation (15.1.23) leads to the concept of artificial compressibility.
Indeed, with equation (15.1.23) the potential equation (15.1.16) can be written
as follows:

d o .
—(pd)+—(5d,)=0 15.1.24
ax(pd’) ay(dey) ( )
with
P=p—kpAx (15.1.25)
p=p—up,Ay

This form was introduced by Holst and Ballhaus (1979).
In curvilinear coordinates, one would have, instead of equation (15.1.24),

d( U\, a(:V\_ |
&(p7>+a<p7)_o (15.1.26a)
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with

p=p—pupA

p=p—up,An
The implications of equations (15.1.24) and (15.1.26a) are extremely important.
These equations show indeed that the correct discretization of the supersonic
regions, which has to be consistent with the physical upstream regions of
dependence, can be fully described and obtained by an upwind estimation of
the density, according to equations (15.1.25) and (15.1.26b). This upwinding is
introduced prior to discretization and the resulting equation is then treated
centrally as in the subsonic case.

(15.1.26b)

Example 15.1.2 Discretization on a Cartesian mesh

With a finite difference scheme on a Cartesian mesh and a discretization of the
form (14.1.1), the artificial densities are needed at the mid-points (i + 1/2,) and
(,j £1/2). Hence, if u,, ;;, ;> 0,

Pit1/25=Pis 1725~ HisPir 25— Pi-172.5) (E15.1.10)
and if u;,,,, ; <0,

Pit1/25=Pis1j25F Piv 1, {Pix 12,5 Preasy) ~ (EI5.L1Y)
and similar relations for p. If v, ;, ,, >0,

Pije12=Pijerjz — WijPije 12— Pij-1s2) (E15.1.12)
and if v, ;,,,, <0,

Pije1a=Pijrizt Hije1Pijerz = Pijes) (E15.1.13)

Another form of the artificial density was introduced independently by Eberle

(1977). If the supersonic influence is taken into account by an upwind effect on

the mass flux, one can estimate these fluxes in a point H situated in the streamwise

direction at a distance Al upstream of the discretization point P (Figure 15.1.4).
Hence,

d(pu
(pu)y = (pu)p — Al —(gl—z (15.1.27)
The second term can be approximated by
i d u\ ud(pg
— =_ —f-—= 15.1.28
al(pu) al(mq) 2 al ( )

neglecting the local effect of the streamline curvature. With equation (13.5.7),
one obtains

9 _ _radq (15.1.29)
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and

i) 1 \dp
Al—(pwy=Alu| 1 -— }j— 15.1.30
al(p ) u( M’) 3l ( )
Similar expressions are obtained for the other mass flux components and hence
the potential equation can be discretized as

V-(pV¢)=0 (15.1.31)
where § is the artificial density defined by

' ﬁ=p—ua—pAI=p—y61(Ep,+pr> (15.1.32)
ol q q

Hafez et al. (1978) obtained a very similar expression where, instead of equation
(15.1.32), one computes j by the relations

p=p—y(5p,Ax+9pyAy) (15.1.33)
q q _

Note that the derivations in the artificial density are upwind differenced,
according to the sign of u, v or of (U, V). Equation (15.1.31) with either (15.1.32)
or (15.1.33) is an extremely convenient form, particularly with finite element
formulations, since third-order derivatives are explicitly avoided, and is widely
used in many transonic potential flow computations. This concept of artificial,
upwinded density has actually some analogy to an upwinding method
introduced by Hughes and Brooks (1982) for the treatment of advective—diffusive
transport equations and further generalized to the Euler equations by Hughes
and Mallet (1986).

In practical computations, it appeared that some empirical corrections had
to be introduced on the switching function g, in order to ensure better stability
in shock regions as a consequence of the ambiguity of u at the sonic transition.
Various expressions have been attempted, such as

2
u=max|:0,<1 —%;)]C-MZ

where M2 is a cut-off Mach number of the order of M ~ 0.95 and C a coefficient
between one and two. The cut-off Mach number M, activates the switching
function in the small subsonic region M, < M < 1, close to the sonic lines. This
appears to improve the stability in some cases. The constant C and the additional
factor M? increase the amount of artificial viscosity and have also a stabilizing
effect.

Other variants can be found in the literature; see, for instance, Habashi and
Hafez (1981). Figure 15.1.5 compares various options for the switching function
as applied to the transonic flow over a NACA 0012 profile at zero angle of
incidence and free-stream Mach number of 0.85. The calculations are per-
formed with a finite element discretization and artificial compressibility. The
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Figure 15.1.5 Comparison of various options for the switching function as

applied to a finite element computation with artificial compressibility by

Habashi and Hafez (1981). (Courtesy M. Hafez, University of California,
Davis, USA)

considerable influence of a proper choice of the switching function on the shock
position and the shock resolution can clearly be seen.

The concept of artificial density is, however, superseded by the flux upwinding
approach, which completely removes the sonic transition uncertainty of the
switching function.

15.1.4 Artificial flux or flux upwinding

The upwinding techniques leading to artificial viscosity or artificial compres-
sibility concepts have been widely used, but a more precise formulation can be
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defined, inspired by the developments of controlled, monotone schemes for
Euler equations (see Chapter 20).

These developments attempt to control the generation of non-linear pre- or
postshock oscillations (over- or undershoots) in the vicinity of strong disconti-
nuities such as shocks or contact discontinuities. Conditions are imposed in
order to prevent the appearance of unwanted peaks in the numerical solution
instead of having them occur and damped afterwards by the addition of artificial
dissipation terms.

These concepts have some application in transonic potential flow problems
as a consequence of the unsatisfactory treatment of the sonic transition region
by the artificial viscosity or density methods. Indeed, the switching function
defined by equation (15.1.18) goes through zero at sonic points and hence the
dissipation vanishes around the sonic transition region. This can lead to the
appearance of expansion shocks or to instabilities when the sonic point is passed
with steep gradients, for instance in leading edge regions of certain profiles. It
is known that the one-dimensional time-dependent small-disturbance equation
with the Murman—Cole switching will not damp an initial cxpansmn shock
(Jameson, 1976b; Goorjian and Van Buskirk, 1981).

In order to avoid these effects the switching at sonic points should be better
controlied in such a way as to avoid the possibilities of unwanted expansion
peaks.

These concepts have been introduced initially by Engquist and Osher (1980),
and applied by Goorjian and Van Buskirk (1981) for the small disturbance
equations and by Boerstoel (1981) and Osher (1982) for the full potential
equation. Further applications are discussed in Hafez (1983), Boerstoel and
Kassies (1983), Goorjian et al. (1983), Hafez et al. (1984), Osher et al. (1985)
and Shankar et al. (1985).

A first observation can be made with regard to the concept of flux upwinding.
The artificial density form of equation (15.1.32) can be written as an artificial
flux, since one has, using equation (15.1.29),

a(pq) ,0q aq N
= =— 1—- M2
P =(pq); 2q a7 =p( )61
op
=ql1- 15.1.34
q( )al ( )

where [ is the streamwise direction and the subscript ! indicates derivatives with
respect to the streamwise direction I. Hence, the corrected upwinded flux pgg
can be written in supersonic regions as

ﬁq=pq—q(1 -—>‘;’I’AI (15.1.35a)

or

ﬁq=pq—%Al (15.1.35b)
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In order to obtain a better treatment of the sonic region and to avoid expansion
shocks, the upwinded flux correction is referred to the sonic mass flux value
p*q*. The artificial mass flux is defined by

— 0
pq= pq-a["(pq—p*q*)]Al (15.1.36)
where

v = 0 for subsonic flow and at the sonic line, thatisfor M < lorg<g*orp > p*
v =1 for supersonic flows, that is M > 1 or ¢ >g* or p < p*

This allows a clear distinction between subsonic, supersonic, sonic and shock
points while the artificial density methods allow only a distinction between
subsonic and supersonic points (see Figure 15.1.6).

The discretized form of equation (15.1.36) will be written as follows, for
instance at a face centre of a two-dimensional cell:

(E)H 12, = (P94 1/2,5— Vi+ 1/2,;(/"1 —p*q%);, 1/2,]
+Vi-l/z,j(Pq—P*Q*)i_m_,- (15137)

and similar expressions at other points.

At subsonic points the artificial or upwinded mass flux (15.1.36) gives the
same result as the artificial density, since p*q* is constant for steady flows,
depending only on the flow conditions at infinity (see Problem 15.5).

At a subsonic point, M < 1 both at (i — 1/2,j) and (i + 1/2, j) and

(P9)i4 1j2.;=(P@)i+1/2,;  for a subsonic point (15.1.38)
At a supersonic point, M > 1 both at (i — 1/2,j) and (i + 1/2, j) and
(P44 1/2.;=(P@)-1/2,;  for a supersonic point (15.1.39)

At a sonic point transition, from subsonic to supersonic velocities, g > g*M>1)
at(i+1/2,j)but g <g* or M < 1 at (i — 1/2, j) (Figure 15.1.6), equation (15.1.37)
reduces to

(E), +1/2,) =(p*q*) at a sonic point transition (15.1.40)

Note that this guarantees that expansion shocks will not occur, since in this
case one would have (pq);,,,, ;< pP*q*

At a shock transition, ¢ <¢* (M <1) at (i+1/2,j) and ¢>q* (M >1) at
(i — 1/2, ), equation (15.1.37) becomes (see also Problem 15.6)

OD;s 12 = PD;s 125+ (P4 — P*T*)i- 112, (15.1.41)

At shock points, the switching ensures that there is only one mesh point in
the shock region since the corresponding cell is treated either as fully supersonic
or fully subsonic as soon as the shock cell is left. This generates very sharp
shocks, as demonstrated by Figure 15.1.7, from Hafez et al. (1984), for the flow



73

11utod 01 paydene [[30 [euonieindwo)) (9) ‘[13 YI0ys (q) 1132 Stuog () ‘suonisuel) yutod Ydoys pue owos e Suipuimdn xnjg 97 ['S] 2mdrg

+1 11
” 1190 %ooys _vQ— "W —AQ -
| E
133 J1u0s 1> N\_:Z 1> u W
Ui+ U1
1190 oruos1adns 1< W 1< W
11
1193 dmiosqns 1 VQT_Z 1 vQ N
() Ui+ -t
1+ ! It
_ e ; & + f
(®
@
1+ I It H 1 11
\— U urt \— Ui+ 8]
f o ) O { ———+—C ) O
| &4 4 1< >

/ T<W
Xo0ys /

1+ 1+

/ &: o1uos




74
over a NACA 0012 airfoil at incident Mach number of 0.8 and zero angle of

incidence, to be compared with Figure 15.1.5,and at M, = 0.75 and 2° incidence.
When the potential equation is written in curvilinear coordinates, the flux

terms are written as
v* v*

= - 15.1.42

P (pq)q 5 ( )

and the first mass flux factor (pq) is upwinded as described above in the

coordinate direction corresponding to the index a of the considered flux
component. Hence, the conservative potential equation will be discretized in

2.0
| S
ol B oot
;
of b ’
......'....
-8 ¢ )
o'.,.
K
o
o
)
- .
C. -3 o
P .
.
* e
v IS hhia {9
op—
.
°
K] r— . s
.
L ]
.
o

o ( E—

.000 © ALMHR  0.000

HACH
(@



HRCH

75

..“0000000'

seed®

<750 ° ALPMR 2.000
(b)

Figure 15.1.7 Pressure distribution on a NACA 0012 airfoil at (a) M =0.8
and zero angle of attack, (b) M =0.75,2° incidence, calculated with flux

finite difference form, with the artificial mass flux approach, as

— U — | 4
o7 [(pq) (—) ] +90, [(pq) ; (—) ]
¢ I Jg i+1/2,j " WrZ\ Jq ij+1/2

upwinding. (From Hafez et al., 1984)

0 (15.1.43)

In supersonic flows, the upwinding directions have to correspond to time-like
directions, as defined in Chapter 13. Hence the £ term, for instance, of equation
(15.1.41) will be upwinded only if the associated contravariant velocity



76

component is supersonic, that is if

U
g

—>c (15.1.44)

When this condition is not satisfied, the £ derivative is centrally discretized
without upwinding. The reason behind this rule can be understood from an
explicit calculation of the Murman and Cole procedure applied to the
E-derivative term of the potential equation written in curvilinear coordinates
(see Problem 15.8).

All the transonic potential calculations performed with the upwinded mass
flux instead of the upwinded density indicate improved shock and sonic point
treatment, improved stability with strong gradients and better convergence
properties. In particular, Goorjian et al, (1983) present some interesting
comparisons between the two approaches (see also Volpe, 1986). In addition,
the flux upwinding does not require any user—specified constants. Therefore
this approach to the transonic treatment of the potential equation is to be
recommended.

In conclusion, it is seen that the original type of differencing method of
Murman and Cole has evolved into the artificial density and flux upwinding
concepts, which, when introduced before discretization, allow a full subsonic
type of discretization to be performed on the potential equation while correctly
taking into account the supersonic properties of the flow.

In addition, the entropy condition is thereby automatically fulfilled ensuring
that no expansion shocks will occur and that the shocks captured by the
computation will be physical compression shocks.

It has to be remembered, however (see Section 2.9.2 in Volume 1), that the
shock produced by the isentropic potential model is an isentropic shock, in
contrast with the exact Rankine—Hugoniot shocks which are connected to
discontinuous positive entropy variations. As a consequence, the shock intensity
will differ from the intensity obtained from solution of the Euler equations, but
also the position of the shock might be different from the one obtained from
an Euler solution. We will come back to this in a later section, 15.3, where
some approximate methods will be discussed that allow the potential flow
solutions to be corrected for non-isentropic effects.

Similar differences with respect to the captured shocks are obtained between
the non-conservative and conservative computations. It is a general observation
that non-conservative computations produce shocks that are closer to the
experimental data than the conservative ones. This comes about because the
mass deficit due to non-conservation of mass flux at the shock, in the non-
conservative calculations, simulates in some sense the effects of shock—boundary
layer interactions occurring in practice. However, the correct way is to respect
the conservation laws during computations and add the physical interactions,
such as a boundary layer viscid-inviscid interaction, in order to have good
control of the various effects contributing to a given flow configuration.
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15.2 ITERATION SCHEMES FOR POTENTIAL
FLOW COMPUTATIONS

Once a proper discretization and a linearization procedure for the density have
been set up, the algebraic system of mesh point values has to be solved by an
appropriate method.

For subsonic problems, direct methods would leave only iterations on the
density non-linearity and are most appropriate when the number of mesh points
is not too high.

For very fine meshes and for three-dimensional flow problems with a large
number of unknowns, direct methods will generally lead to prohibitive
computational times and computer storage requirements. In these cases, iterative
methods for the solution of the algebraic system of equations will be more
appropriate. In addition, preconditioning, multi-grid and conjugate gradient
methods have led to the development of very efficient iterative schemes.

As described in the introduction, this step in the solution of potential flow
equations is an essential part of the whole computation. It has to ensure that
the iterative process towards the final solution is convergent and, secondly, that
this convergent process is as fast as possible.

An additional problem arises in the computation of transonic and supersonic
flows. In order to ensure the convergence of the iterative method, the problems
referred to earlier, and connected to the fact that the passage to supersonic
regions makes the Jacobian matrix K non-positive definite, have to be solved.
The iterative technique will have to be chosen in such a way as to maintain
the sign of the quadratic form in equation (14.4.10) which is equivalent to the
requirement that the successive computed values of the potential all satisfy the
conditions imposed by the supersonic region of dependence.

152.1 Line relaxation schemes

The initial success of Murman and Cole’s approach for transonic flows was not
only due to the introduction of the type differencing but essentially to the result
of the application of a line relaxation method to solve the system of algebraic
equations by a series of tridiagonal systems along the vertical lines perpendicular
to the flow directions, sweeping with the flow. Furthermore, it can be shown
by a Von Neumann analysis of the iterative scheme, following Section 12.1.5
in Volume 1, that an explicit method is unstable (see Problem 15.12).

A standard line overrelaxation (SLOR) iteration method, following equation
(12.2.43) in Volume 1, can be applied to equation (15.1.5) on a Cartesian mesh,
with Ax = Ay. In the supersonic region the scheme becomes

(1- M’)ij(dJ"+1 20" 4 r )+ (¢:."’ij1 - 2¢;'j“ + ¢;;T_‘1) =0 (15.2.1a)

i—-2,j i-1,j L
¢n+1 — ¢n + w(¢m_ ¢") (1521b)

This equation can be written in correction form PA¢ = — R" (see Chapter 12),
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where Ap =¢"*! —¢" and R" is the residual equal to the left-hand side of
equation (15.2.1) taken at the level n:

(M?— 1)(wAd —2wAd,_, ;+ Ad;)—(Ad; ., — 2A¢,;+ A, ;_ 1) =R}
(15.2.2)
This relaxation scheme can be analysed by representing the conditioning

operator P as a differential operator, following the presentation of Section 12.5.
This leads to the representation (see Problem 15.13)

(M? — 1)[wE] 182 + (1 — 0)1A¢,, — 62Ad,, = R, (15.2.3)

where the standard finite difference operators are used (equation (14.1.2)); E is
the shift operator E, ¢,; = ¢;,,; and 67 is the central second difference operator.
The equivalent artificial time-dependent formulation is

i—-2,j

(M2 = D)[wd,, + (1 —0)$p]—b,, = ?R (15.2.4)

where A¢ has been represented by the pseudo-time derivative ¢, ~ A¢/t, with
7 being a fictive time step, and where ¢, is backward differenced. R in the
right-hand side has now to be interpreted as the differential potential equation.

This iterative scheme has to be evaluated in function of the compatibility
of the iterative process with the condition that A¢ should not leave the proper
region of dependence (see Section 14.4).

The ¢,, term is represented in equation (15.2.3) by 62¢™** + (& — )5} ¢", but
the appropriate procedure in the supersonic region is to march in the flow
direction, such that ¢7;*! can be determined only in function of the new values

7+, and @77} . determined on the previous columns. This implies that ¢,
should be represented by 62¢"* ! in the supersonic region. Note that the scheme
(15.2.1) satisfies this requxrement for w = 1. For a general relaxation procedure,
this condition can be satisfied by taking the y-derivative terms at the new level
n+ 1, instead of the intermediate level, introducing hereby a factor w in front
of the y second difference operator of equation (15.2.3).

An additional modification to the standard SLOR method has been
introduced by Jameson (1974) for the treatment of the x-derivative terms. In
the first term of equation (15.2.1), the second ¢ derivative is replaced by the
expression

($7_5,— 20721 j+ 200" — 97)
and the iterative scheme (15.2.1) is now replaced by

(1= M), (@0, — 2002 L ;4205 — o) + (@4, — 205 + 4151,) =0
(15.2.5)

The conditioning operator becomes
2(M?—1)6; Ay — (52A4>,J =R} (15.2.6)
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and the equivalent artificial time-dependent equation is

[_Z(Mz — 1‘) b — ¢J’.Vt] = lR (15.2.7)
Ax T

This treatment leads to the appearance of a ¢,, term in the convergence operator
P, where t is the artificial time, reflecting the convergence history.

The reason behind the introduction of this term comes from a more general
analysis, performed by Jameson (1974), investigating the requirements on the
operator P in order to maintain, during the iterative process, the appropriate
regions of dependence in the supersonic zones.

A general iterative relaxation procedure applied to equation (15.1.4), or more
generally to equation (15.1.7) in the local streamline coordinates, will lead to
a time-dependent equation of the following form, as seen in Section 12.5 in
Volume 1:

200y +2B¢y +v$,=(1— M)y + ¢, (15.2.8)

where ¢, represents A¢/7 and where the residual in the right-hand side is taken
at iteration level n.

For instance, applying a decomposition of the form (15.2.5) to the derivatives
in the rotated difference scheme (15.1.14) leads to

T U T V0
=M2=1)| —=+——
#=t )[qu qu]

B= (15.2.9)

-QI'::

*
Ax

NI'—‘

y=0

where ¢, is differenced upwind in space, with respect to the local velocity
direction, in order to provide the correct sign for increasing the magnitude of
the matrix diagonal. The left-hand side of equation (15.2.8) can be diagonalized
by the following transformation:

T=t- +fn (15.2.10)

M2—1

leading to the equation
o2

M2

( —M2)¢u+¢m.+( - >¢Tr—7¢1=0 (15.2.11)

which is of the form

Kérr+vdr=01—-M*¢y+ o, (15.2.12)

For subsonic flows, K =a?/(1 — M?)+ B? is always positive and equation
(15.2.12) is hyperbolic in T'; hence a stationary solution ¢, = 0 will be obtained
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if the coefficient y provides a positive damping. This requires
y>0 for subsonic flows M < 1

On the other hand, for supersonic flows, the coefficients of ¢, and ¢,, have
opposite signs and the steady-state equation is hyperbolic in I, where [ is a
time-like direction. The iterative evolution has to respect this property and
therefore equation (15.2.12) must remain hyperbolic in /. This requires that K¢ rr
should have the opposite sign to ¢,, and hence K <0, or

a>p/(M*—1) for M>1 (15.2.13)

In addition, in order to maintain the hyperbolic character, no damping term
is allowed and, therefore, y should be zero. This is also confirmed by a Von
Neumann analysis (Jameson, 1974). Hence

y=0 forM>1

These are necessary conditions to ensure the compatibility between the
convergence process and the physical properties of the supersonic flow, but it
does not guarantee the unconditional convergence to the steady-state solution.
It shows, nevertheless, that the presence of a ¢,, term, with positive coefficient,
increasing with Mach number, is necessary in the equivalent artificial
time-dependent equations (15.2.8).

The modification in equation (15.2.5) introduces such a ¢, term when
marching with the flow direction, but this may not the case with other iterative
schemes. Even with relaxation schemes the intensity of the naturally introduced
¢, term might not be sufficient to satisfy equation (15.2.13)—for instance in
the vicinity of the sonic line where a as given by equation (15.2.9) approaches
zero. In both cases, additional ¢,, terms can be introduced explicitly, for instance
under the form

T U
a¢,,=a(A—x‘-1¢,,+Aiy§¢y,> (15.2.14)
where ¢,, and ¢,, are upwind differenced.

The parameter ¢ is a user-specified constant which should be proportional
to Mach number in order to maintain stability of the scheme. However, a too
large value of ¢ could slow down the convergence rate.

The SLOR technique is a simple and effective method for transonic flows
although its convergence rate is not always very efficient. Nevertheless, it is one
of the most widely used methods and can be very effectively coupled with
multi-grid acceleration techniques.

A simple way of improving the convergence properties of line relaxation
methods is to use a sequence of grids ranging from coarse to fine. The solution
is computed initially on the coarser mesh and after a certain number of relaxation
sweeps transferred to the next finer mesh. Since the line relaxation method is
very effective in reducing the high-frequency components of the error, the
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solution transferred to the next mesh will be closer to the exact solution than
the first guess. If this is performed on a series of grids, the starting solution on
the fine grid will already be a good guess and allow a substantial gain compared
to a calculation with the initial solution used from the start on the fine mesh.
This procedure is also of benefit because the line relaxation computation on
the coarser meshes is relatively inexpensive compared to a relaxation sweep on
the fine mesh.

For most of the schemes described in the previous sections, the line relaxation
method will involve the solution of tridiagonal systems along each line. This
can be done in a very effective way be applying the Thomas algorithm. Since
relaxation along the n lines perpendicular to the streamlines gives the highest
coefficients for the ¢, terms, the ‘natural’ relaxation sweeping direction is in
the streamwise direction solving along n lines.

15.2.2 Guidelines for resolution of the discretized potential equation

Once the proper region of dependence of supersonic flows has been introduced
in the discretization, through one or the other form of artificial viscosity, density
of flux upwinding, one could ask if direct methods can be applied, or any other
method for the resolution of algebraic systems, next to relaxation techniques.

To gain more insight into the convergence process of transonic potential flow
computations, Caspar (1980) studied a simple model problem, which allows a
very enlightening analysis of the convergence properties and conditions of
transonic numerical procedures. This analysis, which we will summarize in the
following, explains the role of the artificial viscosity or upwinding in removing
multiple solutions, as well as the effect of ¢,, terms in ensuring better convergence
behaviour. Also, this simple model leads to certain guidelines for ensuring
unconditional stability of the iterative process and explains, for instance, why
subsonic potential codes can still converge in the presence of small, shock-free,
supersonic pockets.

A uniform flow U in a rectangular domain is considered with an inflow
section at x =0 and an outlet section at x =a (Figure 15.2.1). The boundary
conditions are taken to be periodic in the x direction and Dirichlet conditions
are imposed:

&(x,0)=p(x,b)=U_x (15.2.15)
dx+a,y)=90(xy)+U,a (15.2.16)

The solution is given by the uniform flow
¢(x,y)=U x (15.2.17)

and the density

r=1={1_v—1M2_ Vo
2 T 1+ -1/2IM2

1/y—1) .
} =(1-K[VgpyHo-n
(15.2.18)

Po
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Figure 15.2.1 Model problem analysis with uniform flow

has the solution

1 1Hr=1)

r*=(1— K)Yo-1 ={ } (15.2.19)
1+ [0 - 1/21M%,

since |Vo|2=U 2 . An orthogonal Cartesian finite difference mesh is defined

with (N + 1) points in the x direction and (L + 2) points in the y direction

(Figure 15.2.1), and the potential equation is differenced centrally, following

equation (14.1.1):

u¢)ijEV'(rV¢)ij (5:: i+1/2,f x¢ll)+ (5y :_,+1/z‘s ¢:i)=0

(15.2.20)
with

Pigipa,j = BTy j
ri,j+1/2=“y'z:j

r,.,l.=r(|V¢|l.zj)

2

Vg2, ={ ="t 5 ¢‘ +(20u (15.2.21)

] Ay

Since the exact solution is known, the various iterative procedures can be
analysed. Following the general framework developed in Chapter 12,
Section 12.4, the iterative solution of equation (15.2.20), PA¢ = —R", A¢ =
¢"*! — ¢", will converge for the non-singular conditioning operator P, if the
convergence operator

G=1-P 'K; (15.2.22)
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where K is the Jacobian matrix dL/d¢, has all its eigenvalues lower than one;
that is the spectral radius of the matrix G should be lower than one. Note that
when some eigenvalues reach the value of one, K ; is singular and hence multiple
solutions of R(¢) =0 are possible (Ortega and Rheinboldt, 1970).

The eigenvalues of K = dL/d¢ can easily be obtained for the present model
problem, applying equation (14.4.8) at the point corresponding to the exact
solution:

r* 2)52 4 " g2 15.2.23
Kp= E(I—Mw)x+3?y (15.2.23)

The operator P, on the other hand, is dependent on the selected iterative process.

The standard, subsonic, linearized iteration technique is defined by
equation (14.4.1), with central difference operators, and the convergence
operator P being the Laplace operator. This is actually a good approximation
to the Jacobian matrix K, and should therefore lead to rapid convergence. On
the small-disturbance equation, equation (15.1.4), this choice corresponds to the
iterative scheme

::1 + ¢;;-1 = M2¢:x (15.2.24)

On the full potential equation, one obtains the following scheme (also called
the constant stiffness scheme in the finite element literature):
P*Ad+Ady,) = —(VoV oy (152.25)

where p* is the density taken at a previous iteration.

These methods are very effective in subsonic flows, but are not valid in
supersonic flows without appropriate modification, as discussed next. The
convergence operator, obtained for the present model problem, is given by Py, (,
with 6 = Ax/Ay:

r*
Ppc= E(‘S’z‘ +0%57) (15.2.26)

and hence the amplification matrix G becomes
L
8% + 025
The eigenvalues of this amplification operator can best be analysed by a Fourier
representation for periodic boundary conditions in x. Denoting by A the
eigenvalues of the operator G, one obtains
5 sin?®,/2
Ape=M5— 2 in2
sin”“ ®,/2 + ¢*sin* ®,/2

Gy = (15.2.27)

(15.2.28)
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where
(I)x=2—n =2nAxm, m=1,.. N
N a
nl  mAy
= =], I=1,...,L+1 15.2.29
Y L+1 b ( )

These eigenvalues are always lower than one for subsonic Mach numbers, which
explains the rapid convergence of the method for subsonic flows (Gelder, 1971;
Hirsch and Warzee, 1977; Shen, 1978).

For supersonic flows, there is a maximum value of Mach number, say M,,
above which the method will diverge since max A, > 1. The maximum value
of Ap,c at a given Mach number is obtained for the high frequencies ®, ==
and for the low frequency in y, ®, = n/(L + 1), and hence one has approximately

max Ap,c & Mi—;;lm-z (15.2.30)
(4b%)
The limiting Mach number M, is given by
2
Mix1+ (E;&Tx) >1 (15.2.31)

and the stability condition for supersonic flows is M, < M.

Thus, the scheme can remain stable for slightly supersonic flows, but the limit
decreases with the mesh size. This explains the observation of various authors
that the subsonic codes still converge in the presence of shock-free, small,
supersonic regions (Prince, 1978; Caspar et al., 1979; Shen, 1978; Deconinck
and Hirsch, 1980a).

When eigenvalues of G pass through one, eigenvalues of the Jacobian
matrix K, become zero, independently of the iterative operator P. This leads
to multiple solutions of equation (15.2.20) as an explicit calculation shows
(Caspar, 1980).

Artificial compressibility

If artificial compressibility is introduced (equation (15.1.25)) to account for the
supersonic flow regions,

F=r—puéd_r (15.2.32)
the Jacobian matrix becomes, replacing (15.2.23),

*
KTIAc=—Ar?[6§ +0262 — M2 (1 — b )é2] (15.2.33)
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The eigenvalues of K|, are, with I =/ —1,

x
T 4{sin? ®,/2 + o2 sin? /2 — M2 [1 — p(1 — e~ 1%)]sin? ®/2)

MK TlAC) = Ax
(15.2.34)

Due to the complex factor (1 — e~ '®~), these eigenvalues can never be zero and
hence the matrix Ky |,c is never singular (and positive definite). An explicit
calculation confirms that multiple solutions do not appear (Caspar, 1980).

With the same Laplace iterative operator the amplification matrix G ,¢
becomes

Gpjac=Gp,c(l —udy) (15.2.35)
and the eigenvalues of G, ,. are given by

Apjac = Apc[1 —u(1 —e™ )]

= Ap,c[l +(MZ — l)e“”’*]# when M >1 (15.2.36)
Hence, with artificial viscosity the linear Laplace direct method will be only
conditionally stable with a limit proportional to Mach number. The limit is,
however, larger than the limit value M, obtained from equation (15.2.31), but
still proportional to the mesh size. Therefore the stability limit is reduced when
the mesh is refined. For instance, at the highest frequencies in x, ®, =, the
modulus of the eigenvalue becomes, for M > 1,

1
1+0%sin?®,/2

which is to be compared to equation (15.2.30) when ®, = n/(L + 1); that is one
should have M2 <(2 + M?).

Jameson (1976a) has used the rapid convergence properties of the direct
Laplace operator, applying fast Poisson solvers, to accelerate the overall iterative
transonic convergence process by combining it with another method which
would remove the high-frequency errors introduced in the supersonic regions
by the non-convergent Laplace operator. Since the line relaxation method is
effective for this purpose, one could apply several relaxation sweeps after each
Poisson solver solution. This combined scheme converges for transonic flows
with shocks at a much faster rate than relaxation alone (Jameson, 1976a), when
five to eight relaxation sweeps are performed after each direct solution. The
direct, Poisson solution leads to rapid convergence in the subsonic zones while
the relaxation sweeps dominate the convergence behaviour in the supersonic
regions.

Another approach has been followed by Ecer and Akay (1981) using a direct
method for the solution of the algebraic system and a finite element discreti-
zation. Their analysis of the error propagation and amplification confirms the

[Alpjac = M2 —2] (15.2.37)
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results of the present model problem. These authors also deduce a sequence of
increased artificial viscosity coefficients « in g = p — au(dp/01)Al in order to
maintain convergence.

However, increasing the artificial viscosity to stabilize a conditionally
convergent scheme can lead to inaccuracy in the shock position and intensity
since the effect of the viscosity persists in the converged solution on a finite
mesh. Therefore the artificial viscosity should be kept at a minimum value,
while convergence should be enhanced by appropriate iteration techniques and
additional terms, such as the ¢,, terms mentioned above.

The addition of ¢,, terms to the iteration scheme can be performed in various
ways, when coupled to direct methods for the algebraic system.

Introduction of ¢,, terms

This leads to an operator Py, 1 (see equation (15.2.14)):
PoprAd = —euM:-Cré, +1V-(GV4) = —R"  (15239)

where the ¢,, term can be handled in two ways:

(1) Explicitly by ¢,, = A¢"/z, leading to an operator Ppre

(2) Implicitly by ¢,, = A¢"*!/z, leading to an operator |

In this last case a linearization procedure is necessary.

When added implicitly, the convergence operator Py, has an additional
term proportional to eM?2, while the explicitly added ¢,, term will give an
additional eM2 term in the expression of K. Therefore, the M2 dependence
of the maximum eigenvalue will remain in this latter case, but with the implicit
operator Py, 1, the limiting value will be independent of Mach number since
the amplification matrix G = 1 — P~!- K, will have a Mach number dependence
in the denominator which will compensate the corresponding factor in the
numerator of equations (15.2.28) and (15.2.36). Therefore, the presence of the
¢,, term will enhance the stability when added explicitly, but will not allow
unconditional stability with a direct method when the mesh size is reduced or
the Mach number increased. However, an implicitly added ¢,, term, with a
coefficient proportional to M2, will allow unconditional stability for reduced
mesh sizes or increased Mach number. Note that the M2 dependence of the
¢, term is essential to obtain unconditional stability in this case.

Introduction of ¢,, terms in the density

Hafez et al. (1978) suggested another alternative for the introduction of artificial
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time-dependent terms, namely the addition of a ¢, term in the expression of
the density, following the time-dependent exact expression (equation

(13.1.4)):

T2 1/y-1.
pﬁ=(1 —I—g—l—sw,) (15.2.39)
1] 0

In this case, too, the added ¢, term can be treated explicitly or implicitly. Similar
conclusions as above are obtained for a direct method resolution, namely the
implicit artificial time term in the density will lead to unconditional stability,
while the explicit treatment will improve the convergence properties but will
not lead to unconditional stability. Figure 15.2.2, taken from Caspar (1980),
illustrates these properties for the model problem of Figure 15.2.1. The figure
displays the evolution of the spectral radius of the amplification operator with
increasing Mach number for the different options discussed. The ‘Taylor’
denomination stands for a linearized direct method. The improvement brought
by the artificial time-dependent terms—either ¢, in the density or ¢,,——is clearly
seen, but remains conditional while the implicit treatment of these terms allows
an unconditional stability.

Similar results are obtained when the spectral radius is computed for
decreasing mesh size. Only the implicit artificial time dependence will lead to
unconditional stability.

1.0

TiC
TIAC

T/ACIATE
0.9

T/ACIATI

T =Taylor
C =Centered
AC =Artificial compressibility
ATE = Explicit artificial ¢,
ATI =Implicit artificial ¢
0.6 ] I 1 1
1.00 1.25 1.50 175 2.00 225

2
M0

Maximum Residual

0.7

Figure 15.2.2 Spectral radius of amplification operators for the
model problem. (Courtesy J. Caspar, United Technology
Research Center, USA)
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Linearized line relaxation method

If the same linearization procedure is coupled to a line relaxation itera-
tion and artificial compressibility, one obtains from the vertical SLOR on
equation (15.2.20) the convergence operator

r* /2 o? -
Pgior = K;[(;u‘— 1) —;53 +9; ] (15.2.40)

and the amplification operator Gg, . is given by
Gsior =1~ PgorKr (15.2.41)

where K is given by equation (15.2.33).

Here, again, the M2 term in K will limit the stability region of the scheme
and hence only conditional stability will be achieved. The method will not
converge if the space discretization is continuously refined or the Mach number
is increased.

This can be improved, and unconditional stability achieved, if an additional
¢, term proportional to M2 is added to the SLOR operator, that is in an
implicit way. Note that introducing the density terms as part of the SLOR
iteration will produce these implicit ¢,, terms.

Linearized approximate factorization method

The approximate factorization techniques, derived from ADI methods, will be
discussed in the next section and are widely used in transonic potential flow
computations.

The model problem analysis shows that standard ADI is stabilized uncon-
ditionally by the addition of implicit ¢, in the density or ¢,, terms in close
analogy with SLOR behaviour, but are only conditionally stable otherwise.

15.2.3 The alternating direction implicit method—approximate
factorization schemes

The alternating direction implicit scheme— ADI—has already been discussed
in Chapter 12, Section 12.3.2. It provides a locally one-dimensional space
splitting, together with an implicit treatment in each direction, generally leading
to tridiagonal systems for three-point discretization formulas as developed in
the previous sections. Hence convergence rates higher than obtainable by line
relaxation methods can be achieved, since the influence of one mesh point on
the others is transmitted in a faster way.

It was therefore tempting to consider the application of these schemes to the
transonic full potential equation. This was introduced by Ballhaus and Steger
(1975) for the unsteady transonic small disturbance equation and for steady
flows by Ballhaus et al. (1978). It was then extended to the full potential equation
by Holst and Ballhaus (1979). The original ADI formulation is adapted to
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elliptic problems and, as mentioned above, is not expected to provide
unconditional stability for higher Mach numbers or finer meshes in the transonic
regime. Some adaptations will therefore be necessary, introducing ¢,, terms in
the convergence operator, leading to the so-called AF2 schemes.

The basic ADI scheme— AF1 scheme

In a general curvilinear coordinate system, the ADI scheme will take the
following form, referring to a discretization of equations (14.1.16) to (14.1.18):

CamAdi;=(1— 05} 4,37 )(1 — 08} A,57)Ad=0wR:,  (15.2.42)

In the above formulation the right-hand side is the residual, as would be obtained
by any of the discretization methods discussed in the previous sections. The
coordinates &,n represent curvilinear coordinates and the coefficients A are
defined as follows:

11
A= (9__”2> (15.2.43a)
JA€ i—1/2,j
22
=L (15.2.43b)
JAn i,j—1/2

Note that only the diagonal elements of the metric tensor g appear in the above
coefficients. In the case of a discretization in a Cartesian mesh, the variables
¢, n become identical to the x, y coordinates and the coefficients A reduce to
the density divided by the mesh spacing squared, in the corresponding direction.
In practical calculations the density will be replaced by some form of artificial
density in the supersonic regions.

As usual the ADI method is solved by a local one-dimensional splitting in
the following steps:

(1—06] A5;)fi;=00R]; (15.2.44a)
(1—06; 4;6,)A¢i;=fi; (15.2.44b)

An alternative form, requiring less computational effort, but which might be
less efficient in iteration counts, consists in setting the 4 coefficients outside the
difference operator.

In the formulation of equations (15.2.43) corresponding to second-order
discretizations, each of these equations represents a set of tridiagonal matrix
equations along the corresponding lines. Hence, the whole mesh is swept through
twice for each iteration step, once along the different coordinate directions.
The parameters ¢ and @ have to be optimized and can be selected according
to the guidelines mentioned in Section 12.3.2 in Volume 1. This scheme gives
excellent convergence rates in subsonic flows.

Since this iteration scheme, unlike the line relaxation method, does not
generate the equivalent of the ¢, terms, it is not expected to have good
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convergence properties for transonic flow regimes, unless some form of ¢,
upwind term is artificially added. In order to generate these upwind terms within
the iteration scheme, the variant called AF2 has been introduced by Holst and
Ballhaus (1979) and Holst (1980).

The AF2 scheme for transonic potential flows

In order to provide a natural build-in ¢, term in the convergence operator, the
derivative in the mainstream direction, taken here as the £ direction, is split
over two factors as follows, written for a two-dimensional flow:

(1—066; A)(0; — 00, A0, )Ad;;=0owR]; (15.2.45)

This is implemented in a two-step procedure:
(1-0d; A))f;j=00R]; (15.2.46a)
(0 — 00, A;0,)Ad;=Ff; (15.2.46b)

The first step, along the & lines, is a bidiagonal matrix system which is solved
by sweeping in the negative £ direction. The second step solves a tridiagonal
system in the » direction for each constant ¢ line, sweeping in the positive &
direction.

As for the ADI-AF1 scheme, the parameters ¢ and @ have to be optimized.
The latter is generally taken close to the theoretical optimum of two. Large
values of ¢ are effective in reducing the low-frequency errors, while small values
will be effective at the high-frequency end of the error frequency bandwidth.
Therefore it is suggested, following Ballhaus et al. (1978), that a sequence of
values of o be used, ranging from low to high in order to cover the largest
possible range of error frequencies (see also Section 12.3.2 in Volume 1).

One of the problems of ADI factorization methods is the definition of
boundary conditions for the intermediate solution f in equations (15.2.44) and
(15.2.46). In many cases a Dirichlet condition on f is imposed, setting the
function value to zero at the boundary, or a Von Neumann condition can be
chosen. Restrictions on the stability conditions can follow from the boundary
conditions, and limitations on ¢ and w might have to be imposed. This is
discussed in South and Hafez (1983). In particular, the a coefficients in the AF2
scheme have to be restricted at the boundaries in order to ensure convergence.

As mentioned earlier, the density is to be replaced by an upwinded form in
the residual and in the convergence operator on the left-hand side of the factored
equation. However, tests performed by Holst (1980) with the AF2 scheme show
that introducing the upwinded density in the residual only and not in the
factored convergence operators does not reduce the convergence rate. Moreover,
replacing the density by a constant in the left-hand side also produced stable
results, but with a convergence rate slowed down by a factor of two to three.

Figure 15.2.3, from Holst and Ballhaus (1979), shows a comparison of
convergence rates between the AF1, AF2 and SLOR schemes as applied to a
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Figure 15.23 Maximum residual convergence history for SLOR, AF1 and AF2
iterative schemes applied to the transonic potential flow over a circular arc airfoil of
10 per cent thickness, at a free-stream Mach number of 0.84. (From Holst and
Ballhaus, 1979)
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Figure 15.24 Mach number distribution on the upper surface of the ONERA M6 wing
at a free-stream Mach number of 0.84 and 3.0° incidence, with a 225 x 30 x 30 mesh.
(Courtesy T. Holst, NASA Ames Research Center, USA)
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10 per cent thick, circular arc airfoil at a free-stream Mach number of 0.84.
The convergence rate is expressed by the maximum residual. The marked
improvement in convergence rate over SLOR is clearly seen as well as the
superiority of the AF2 formulation compared with the standard AF1-ADI
method. However, the AF1 scheme behaves better with subsonic flows. The
excellent behaviour of these schemes is tied to an optimization procedure of
the ¢ parameter as described in Section 12.3.2, and some trial and error is
required to find the optimal range.

Most of the stability and convergence properties of ADI schemes and their
approximate factorization versions are based on uniform grid assumptions and
do not take into account the effects of strongly stretched or distorted grids.
Computations show, however, a significant decrease in convergence rates in
these cases, when compared to the same flow problem calculated on a uniform
grid. A detailed investigation of the influence of the grid distortion on the
convergence properties of approximate factorization schemes has been presented
by Catherall (1982), following the introduction of a very successful variant called
AF3 by Baker (1981). The AF3 variant is similar to the AF2 or backward
difference operator, but the coefficients A are also factorized and distributed
between the various factors. In particular, the metric coefficients can be explicitly
factorized in order to take into account the effects of grid stretching, and an
analysis of the optimal choices for the factorization of the A coefficients can be
found in Catherall (1982).

The ADI approximation factorization techniques can be applied to finite
element discretizations if the mesh is generated by intersections of families of
lines, as obtained from curvilinear coordinate systems. Applications to
(transonic) potential flow computations on arbitrary, body-fitted meshes were
developed by Deconinck and Hirsch (1979, 1980a, 1980b) for various bilinear
and biquadratic elements.

The ADI approximate factorization method has been extended by Holst and
Thomas (1983) to the computation of three-dimensional potential flows over
swept wings. The following figures show the results of a computation on the
ONERA M6 wing at a free-stream Mach number of 0.84 and 3.0° incidence,
for which experimental data are available (AGARD Report AR-138, 1979),
performed by T. Holts (private communication) with a very fine mesh of
225x30 x 30 points using the TAIR code, Dougherty etal (1981)
Figure 15.2.4 shows the Mach number distribution on the upper surface, while
Figure 15.2.5 persents the Mach number cross-sectional plots at five stations
and a typical cross-sectional O-grid used for the computation with a nearly
constant chordwise spacing. The computed pressure coefficients are compared
to the experimental data on Figure 15.2.6 at five different stations. Note that
the spanwise locations of the experimental data and the computed results are
not identical. As expected, the potential shock is downstream of the experi-
mentally observed position, but the high resolution gives an excellent pre-
diction. In particular, at 80 per cent span the double-shock structure is still
well captured.
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Figure 15.2.5 Mach number cross-sectional plots at five spanwise

stations of the ONERA M6 wing at a free-stream Mach number of

0.84 and 3.0° incidence with a 225 x 30 x 30 grid. (Courtesy T. Holst,
NASA Ames Research Center, USA)
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Figure 15.2.6 Computed pressure coefficients at five spanwise stations of the

ONERA M6 wing at a free-stream Mach number of 0.84 and 3.0° incidence

compared to experimental data. (Courtesy T. Holst, NASA Ames Research
Center, USA)

15.2.4 Other techniques—multi-grid methods

Although line relaxation and approximate factorization methods are most
widely used in potential flow computations and are applied in many of the
available potential codes, many other methods have been investigated which
have shown prospects for equal or better convergence properties than SLOR
or approximate factorization.
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Figure 15.2.7 Comparison of convergence rates of the AF2 scheme and Zebra line
relaxation—three variants—for the flow on a NACA 0012 airfoil at a free-stream Mach
number of 0.85 and 0° incidence. (From Hafez and Lovell, 1983a)

Among successful variants, Zebra line relaxation, easily vectorizable, can be
mentioned (Hafez and South, 1981; Hafez and Lovell, 1983a), as well as several
conjugate gradient preconditioning techniques (Habashi and Hafez, 1982; Wong
and Hafez, 1982; Wong, 1983; Hafez, 1983). Figure 15.2.7, from Hafez and Lovell
(1983a), compares the convergence rates of the AF2 scheme with several variants
of Zebra relaxation for an NACA 0012 calculation at 0.85 Mach number.

For practical computations on coarse meshes, simple SLOR, eventually under
Zebra form, or approximate factorization can be recommended as a good
compromise between simplicity and performance.

For more advanced codes, and if minimization of computer time is of concern,
then the multi-grid method should be strongly recommended. It has been applied
initially by Jameson (1979) to the conservative full potential equation with
considerable success, producing converged results in a few multi-grid cycles.
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UPPER SURFACE (1)

UPPER SURFACE (2)

(b) Upper surfacs isobars for cylindrical fuselage (1) and plane wall (2)
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4

LOWER SURFACE (1)

LOWER SURFACE (2)

(c) Lower surface isobars for cylindrical fuselage (1) and plane wall (2)

Figure 1529 Comparison of the influence of two wing-body combinations on the
ONERA M6 wing at a free-stream Mach number of 0.84 and 3° incidence. (Courtesy
D. Caughey, Cornell University, USA) -
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An enhanced approximate factorization approach with increased sensi-
tivity to the high-frequency errors is used as a smoothing operator. Compared
to the ADI scheme (15.2.42), Jameson applies the scheme

(S— a8 4,67 )(S — 067 Ai67)Ad,; = owSR;; (15.2.47)

where
S=1+ aég + ﬂé,,‘ (15.2.48)

The coefficients « and f depend on the flow type and are user input and a single
ADI iteration sweep is performed on each mesh before passing to the other
mesh.

Figure 15.2.8 shows results of a transonic flow on an NACA 64A410 airfoil
at M =0.72 and 0° incidence obtained with this multi-grid technique. Pressure
coefficients on three successive meshes of 48 x 8,96 x 16 and 192 x 32 are shown
after only three multi-grid cycles (A. Jameson, private communication). The
residual reduction rate has a remarkably low value of 0.4637 on the fine mesh
and after ten cycles the residual has dropped to 10~# with no change in the
lift coefficient of 0.6640 obtained after three cycles.

Other variants have been developed with finite element discretizations by °
Deconinck and Hirsch (1981) and subsequently improved by Bredif (1983). A
detailed investigation of multi-grid strategies and smoothing operators applied
to the potential equation is to be found in Van der Wees et al. (1983).

Three-dimensional applications of the multi-grid method have also been
developed by McCarthy and Reyhner (1982), Caughey (1983) and others.
Although convergence rates are generally not as impressive as in two-
dimensions, excellent results can be achieved.

Figure 15.2.9 compares the influence of two different wing-body combinations
on the ONERA M6 wing at a free-stream Mach number of 0.84 and 3.0°
incidence, namely a cylindrical fuselage and a plane wall. The importance of
the three-dimensional interference effects can be seen on the upper as well as
lower surface pressure and distributions. In particular, the shock intensity in
the root area is markedly reduced by a circular fuselage, while the leading edge
expansion is enhanced. These calculations were obtained after fourteen multi-
grid cycles, with SLOR relaxation, on a 160 x 24 x 25 grid by D. Caughey
(private communication).

153 NON-UNIQUENESS AND NON-ISENTROPIC
POTENTIAL MODELS

As discussed in Section 2.9.2 in Volume 1, the isentropic assumption leads to
a restricted validity range of the potential flow model for transonic flows with
shocks, as compared to the exact inviscid flow description provided by the
system of Euler equations. As soon as shocks appear in the flow, consequences
of the isentropicity are twofold.
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15.3.1 Isentropic shocks

The shock intensity as resulting from the constancy of entropy cannot be equal
to the correct non-isentropic shock jumps as defined by the Rankine-Hugoniot
relations. The Rankine-Hugoniot shock relations are obtained through the
satisfaction of all the conservation laws, mass, momentum, energy, and lead to
an entropy increase through the shock discontinuity, while the potential model
imposes constancy of entropy and can only satisfy mass and energy conservation.

Compared to the correct shock intensity and position, the potential shocks
are stronger and located further downstream on airfoils and in channel flows.
The difference between potential and Euler shocks increases with increasing
Mach number levels but remains relatively limited for non-lifting airfoils. For
lifting airfoils, however, these differences can become very strong and lead to
very different flow configurations at the same incident conditions.

Figure 15.3.1 to 15.3.3 show comparisons between potential and Euler
solutions. The potential solution is obtained with Jameson’s finite volume code
(Jameson and Caughey, 1977), using artificial viscosity and the multi-grid
acceleration scheme (Jameson, 1979). This code allows the residual to converge
up to machine accuracy due to the effective multi-grid scheme. The second

" solution is obtained by solving the Euler equations with a modified version of
a code developed by Jameson and described in Chapter 18. Figure 15.3.1
compares the two solutions for a non-lifting NACA 0012 airfoil at 0° incidence
and an incident Mach number of 0.82.

Figure 15.3.2 and 15.3.3 show a similar comparison of pressure coefficients
and iso-Mach lines at a free-stream Mach number of 0.75 and an incidence
angle of 2°. The potential calculation has been performed on a very fine O-mesh
of 384 x 64 points, while the Euler calculation was obtained on a more standard
mesh of 192 x 33 shown in Figure 15.3.3(c). The consistently stronger potential
shock is clearly seen; the potential model predicts a lift coefficient of 0.615 while
the Euler model leads to a value of 0.439. Additional examples at higher Mach
numbers are presented in Figures 2.9.5 to 2.9.7 in Volume 1.

15.3.2 Non-uniqueness and breakdown of the transonic potential flow model

It has been found numerically that the isentropic potential flow model has
non-unique solutions in the transonic range. This is well known for internal
flows but has also been found in external flows, as discussed in Section 2.9.3
(Steinhoff and Jameson, 1982; Salas et al., 1983); see Figures 2.9.15 and 2.9.16 in
Volume 1. Non-physical solutions are found with negative lift coefficients at
positive angles of incidence or non-symmetrical solutions at zero incidence.
The extremely careful investigation of Salas et al. (1983) and Salas and
Gumbert (1985) shows, without any doubt, that this is a feature of the
mathematical model of the conservative differential equation for the isentropic
potential function. These non-unique, non-physical solutions do not seem to
appear with the Euler equations and nor are they found when the same flow
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LOCAL MACH NUMBER

NACA 0012
ORID=394X64, AM= .750, ALPHA= 2.0000
MIN= 0. . MAXe 1.3SE+00, INC= S.00E-02

(a)

Figure 15.3.3 Comparison of iso-Mach lines on a NACA 0012

airfoil at M = 0.75 and 2° incidence, computed with: (a) Potential

flow model. (Courtesy C. R. Gumbert and J. South, NASA Langley

Research Center, USA.) (b) Euler model. (Courtesy M. Salas, NASA

Langley Research Center, USA.) (c) O-Mesh of 192 x 33 points
around an NACA 0012 airfoil

is computed with a non-conservative potential code, which leads to shock jumps
of lower strength than the isentropic conservative ones. Figure 15.3.4 shows a
comparison for the NACA 0012 airfoil between the lift~incidence angle curves
as computed by these three flow models. The potential results show a lift-
incidence relation which is unphysical, since the slope at the origin has to be
positive. For certain incidence angles there can be three different solutions, none
of them having physical significance.

It seems, therefore, that the non-uniqueness is strongly connected with the
isentropic condition of the conservative potential model which is not satisfied,
at the shock, by the other two computations. Actually a more detailed
investigation, by Salas and Gumbert (1985), of the transonic potential flow over
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NACA 0012 M_ = 0.83
0.7~ O Conservative potential model
0.6 |-

0.5 |~
0.4 A Non-conservative potential
0. 3 model

R —

02
0.1

[ Euler model

0.1 F
02|
03|
04 |
05 -
06 |

0.7 -
I N TN U Y Y Y T

-1.0-0.8-0.6-0.4-0.2 0 0.20.40.6 0.81.0
a, deg

Figure 1534 Calculated variation of lift coefficient with incidence angle for a

NACA 0012 airfoil at an incident Mach number of 0.83 obtained with Euler,

conservative and non-conservative potential model. (Courtesy M. Salas, NASA
Langley Research Center, USA)

several airfoil sections, covering a wide range of Mach numbers, has shown
that the observed non-uniqueness of the potential equation is the continuation
of a progressive breakdown of the isentropic potential model. This breakdown is
illustrated by the increasing deviation between the potential model behaviour
and the physically correct behaviour, in the inviscid approximation, predicted
by the Euler equations. Figure 15.3.5 shows a computed diagram of lift
coeflicient versus incidence angle, at various Mach numbers, for the NACA
0012 and the NLR 7301 supercritical airfoils. The remarkable fact is the increase
in lift above the well-known linear behaviour at small incidences where one
expects physicaily the lift to decrease. This is shown in Figure 15.3.6 to be
correctly predicted by the Euler computations.

The upper part of the S-shaped curves stops rather abruptly. This is due to
the upper surface shock wave reaching the airfoil trailing edge and the difficulty
of the O-mesh used in the code to resolve shocks downstream of the trailing edge.
Normally the curves should start turning down beyo.d this point because of
the increasing size of the supersonic bubble on the pressure surface, reducing
the lift on the airfoil.

The slope of the lift—incidence curve as obtained from the Euler computations
is essentially negative since the vorticity generated behind the shock is of
opposite sign to the circulation. Hence this tends to reduce the lift for increasing
angles of attack. Since the potential model is irrotational, the vorticity created
downstream of a shock is not taken into account and the lift will increase with
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ure 15.3.5 Calculated variations of lift coefficient with incidence angle at different
dent Mach numbers, obtained with the conservative potential model. (From Salas and
Gumbert, 1985)
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Figure 15.3.6 Comparative variation of lift-incidence curves for a NACA 0012 airfoil, as obtained
from potential and Euler models. (From Salas and Gumbert, 1985)

shock strength. Figure 15.3.6(b) shows the behaviour of the slope lift-incidence
at two values of incident Mach number, demonstrating these effects. The same
behaviour of the potential model is found for all airfoils tested (Salas and
Gumbert, 1985). From these curves a diagram can be generated, displaying the
Mach number-incidence range above which the potential model breaks down,
as indicated by the values where the slope of the curve lift-incidence deviates
from the linear behaviour. This is shown in Figure 15.3.7 for five airfoil sections.
The regions above the curves can be considered as the region of non-validity
of the potential flow model. Note the design points of the two shock-free
supercritical airfoils (b) and (c), which are isolated shockless solutions appearing
as singular points surrounded by solutions with shocks.

These severe limitations of the standard potential flow models could be
reduced if the isentropic assumptions at the shocks are removed and replaced
by some approximations of the correct Ranking—Hugoniot jump relations. This
would maintain the advantage of potential flow models with regard to their
economy and reduced computer cost, and extend their applicability range.

15.3.3 Non-isentropic potential models

An illuminating analysis has been presented by Klopfer and Nixon (1983) of
the various assumptions at the basis of potential theories. Klopfer and Nixon
investigated the different options available within the isentropic assumptions
with regard to the conservation laws over a shock discontinuity. The standard
potential model conserves mass and energy but not momentum. Other
alternatives consist in conserving mass and momentum or energy and
momentum. A one-dimensional analysis shows that conserving mass and
momentum leads to shock intensities which are the closest to the Rankine-
Hugoniot relations, followed by the standard potential model assumptions. The
last option, which does not conserve mass, leads to large deviations and is not
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to be recommended. Discussions of these various options can be found also in
Viviand (1980) and Hafez and Lovell (1983b).

If, instead of satisfying all the conservation equations, errors are introduced
by the model assumptions, for instance by the non-conservation of momentum
in the isentropic potential model, one has the following steady-state equations:

V-[pv(1 +¢,)]=0 (15.3.1)
V- [p7 @7 +p(1+¢6,)]=0 (15.3.2)
V-[pvH(1+¢)]=0 (15.3.3)

where ¢, £, £, are the errors in the conservation of mass, momentum and energy
respectively. For the standard potential model ¢, =¢,=0,¢, #0 at shock
discontinuities. Introducing Crocco’s form of the momentum equation,
equation (2.7.4) of Volume 1, leads to
S —-(1+s,> 1 = T
—Tx{=TVs—VH{ —— | ——[V(pen) — 7 -V(p7Te,)] (15.34)
l+eg, p

This shows that the conservation errors appear as vorticity sources unless their
gradient is zero, which is highly unlikely in a general flow configuration. For
the isentropic potential model, equation (15.3.4) reduces to

—Tx{=-— lV(pe,,,) (15.3.5)
P

showing that the non-conservation of momentum through a shock produces
vorticity and hence the potential function does not exist any more downstream
of a shock. This is a basic inconsistency of the potential model for flows with
shocks. Actually, a non-uniform shock will generate an entropy gradient
downstream of the shock and hence the correct inviscid flow withe, = ¢, = ¢, =0
satisfies

—7 x T =(TV8)poa (15.3.62)
or
gr=TE (15.3.6b)
dn

and is also not irrotational. However, a small-perturbation analysis shows
(Klopfer and Nixon, 1983) that the vorticity produced at an isentropic potential
shock, with Mach number M, upstream of the shock, due to non-conservation
of momentum is of the order of (M2 — 1), while it is of the order of (M — 1)?
for the non-isentropic shock satisfying all the conservation equations, that is
for the Rankine—Hugoniot shocks. Hence, a non-isentropic correction to the
potential shocks can be expected to have better accuracy than the isentropic
potential shock.

The approach followed by Klopfer and Nixon consists in modifying the
relation between density and velocity in such a way as to introduce the entropy
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variation over the shock, writing instead of equation (13.1.6)

2 1/(y=1)
L_ [K(l —%)] (15.3.7)
Po 0

where (see equation (2.1.27) in Volume 1)
K =eAslky (15.3.8)

and As is the entropy increase over the shock. Actually, this is equivalent to a
modification of the stagnation density p,, since one has ahead of the shock
Po=Po1=DPo1/rTy and downstream of the shock pg, = po,/rTo # po, Where
Poz2/Po1 18 the total pressure loss over the shock given by equation (2.9.21) in
Volume 1. Hence equation (15.3.7) can be rewritten as

vy 15.39
= 1——— 3.
P Poz( 2H0) ( )
where p,, is given by
Poz = m(m) (153.10)
Do1

This approach has been considered independently by Deconinck and Hirsch
(1983) in order to resolve the non-uniqueness of the potential flow with shocks
in internal flows and to be able to establish a relation between the physical
downstream pressure and the potential difference boundary condition neces-
sary to locate the shock position according to the procedure developed in
Section 13.4. The same approach has been applied to transonic nozzles and
transonic cascades by Habashi et al. (1983).

Of course this requires that the computational procedure be adapted in order
to find the shock position and subsequently to assume that the one-dimensional
shock relations for a normal shock are valid. This is justified for simple shock
structures but is undoubtly more difficult to apply for complex shock con-
figurations such as the ones illustrated in Figure 15.1.2.

Figure 15.3.8, from Whitlow (1988), shows a comparison between a potential
flow and a Euler solution for an NLR 7301 airfoil at M , = 0.70 and 2° incidence.
As can be seen from this figure, the isentropic potential model gives a strong
shock close to the trailing edge and no shock on the pressure surface, while
the Euler solution has a weaker shock close to the 60 per cent chord. With the
isentropic corrections closer agreement with the Euler solution is obtained.

For external flow problems an additional adaptation has to be introduced
with regard to the Kutta condition, since a relation exists between the shock
position, which fixes the circulation, and the jump in potential at the trailing
edge cut. A detailed investigation of the relation between the shock position
and trailing edge flow, in particular the flow angle of the stagnation streamline
for lifting airfoils, has been applied by Lucchi (1983) in order to introduce
non-isentropic shock corrections to a potential flow computation.
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Figure 15.3.8 Pressure distribution on an NLR 7301 airfoil at M, = 0.7 and 2° incidence, obtained

from the potential model, Euler model and non-isentropic corrections to the potential model. (a)

Isentropic potential and Euler solutions. (b) Non-isentropic potential and Euler solutions. (From
Whitlow, 1988)

The Kutta condition satisfied by the potential calculation corresponds to
equal static pressures on both sides of the trailing edge, since the stagnation
pressures are equal in the isentropic assumption. Hence, the dividing streamline
leaves the trailing edge along the bisector direction. However, with a non-
isentropic shock the stagnation pressures are different on pressure and suction
surfaces and the bisector direction is not a force-free streamline. The stagnation
streamline will in this case leave the trailing edge under an angle «,, with the
bisector directed towards the suction surface. This angle is a measure of the
stagnation pressure difference between both sides of the airfoil, and therefore
allows the position of the isentropic shocks to be fixed. Although the shock
positions are extremely sensitive to small variations in the angle of the stagnation
streamline (Lucchi, 1983), good results are obtained by correcting the potential
pressure distribution by a constant shift defined by the Rankine—Hugoniot
relation and iterating over the streamline angle at the trailing edge in order to
satisfy the condition of equal static pressures.

All the methods based on corrections to a potential function do require some
form of shock detection and some simplifying assumption with regard to the
normal shock relations. This is also the case for the non-isentropic calcu-
lation of Ecer and Akay (1983). In this approach the Clebsch representation
(equations (2.8.12) and (2.8.14) in Volume 1) is used and the rotational function
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¥ is obtained through equation (2.8.14) and the generated entropy over the
shock.

Clearly the introduction of non-isentropic corrections into conservative
potential is to be recommended as a simple way to increase the validity range
of potential flow models. Examples of applications can be found in Siclari and
Rubel (1984) and Chen et al. (1985).

154 CONCLUSIONS

The potential model is actually a correct inviscid representation for subsonic
flows as well as for shock-free supersonic flows and can be used in this range
with excellent results as long as no strong shocks are present. A large number
of applications exist currently in industry.

The problems connected with the hyperbolic properties of the potential
equation in the supersonic regions can be treated by the introduction of artificial
viscosity, density upwinding or flux upwinding, while maintaining the subsonic,
central differencing of the potential equation. This has to be coupled to an
appropriate iterative scheme of the algebraic system of equations.

For weak normal shocks, the inconsistencies with regard to the full Euler
model can be circumvented in various ways, through non-isentropic corrections,
as long as the maximum Mach number remains below values of the order of
M =~ 1.3. Also, within this range, the interactive computation with the boundary
layer development provides a valid approximation to the viscous effects, as
illustrated by the examples of Figure 2.5.3 in Volume 1.

The computational methods for potential flows have reached a strongly
developed stage and three-dimensional flows can be computed today in a few
seconds of computer time on the present available computers. Although the
isentropic potential flow model has a limited range of validity and problems of
non-uniqueness for the conservative formulation, its usefulness in the subsonic,
low transonic and fully supersonic flow regimes is well established.

Outside this range, the full system of Euler equations should be advocated
for the computation of inviscid flows.
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PROBLEMS

Problem 15.1
Obtain the relations (15.1.9) analytically.

Problem 15.2

Work out explicitly the difference form of equation (15.1.9) applying equations (15.1.10)
and (15.1.11) and derive the rotated difference scheme in the Cartesian system of
coordinates.

Show the validity of equation (15.1.12).

Problem 15.3

Apply the artificial density formulation to the finite difference discretization of
Problem 14.8 for the flow along a cylinder. Try various expressions and coefficients of
the artificial density.

Problem 154

Repeat Problem 15.3 with a finite volume scheme (Problem 14.10) and artificial viscosity
(15.1.19). Compare with the formulations of Problem 15.3.

Problem 15.5

Show that the sonic conditions are related to the reference conditions of the flow at
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infinity, by the following relations:
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Hint: Apply the perfect gas relations and the conservation of energy Ho=h + V’/Z to
obtain the relations for the critical, sonic conditions g, = ¢, The velocity at infinity is U .

Probiem 15.6

Compare the upwinded fluxes (15.1.37) at sonic and shock points with the fluxes obtained
from the corresponding upwinded densities, according to the following equations:

Pis vy [a- ”)p]Hx/z.j t 12, 5Pi w1241

M2
max| 0,{ 1——E5 ) [CM2 ifU >0
v iy 1+1/2,)
Pivr23= M2
maX[0,<1— 5 ):ICMizH.j #U,412,<0
i+1,

The subscript ! is equal to minus the sign of U, | i

Analyse the differences and observe the effects of the constant M2 on the spreading
of the shock.

Problem 15.7

Apply the artificial flux formulation, equation (15.1.37) to Problem 15.3. Compare both
cases.

Problem 15.8

Consider the conservative potential equation in two dimensions, in curvilinear coordi-
nates, Example 13.1.1, and apply the Murman—Cole upwinding in the ¢ direction,
following equation (15.1.3). Develop the difference equations by applying the formulas
(14.1.17) and (14.1.18).

Show that the additional term from the upwinding is proportional to
P gl 1 U2
—J_(gucz - l>¢€C§A€

Observe that for subsonic contravariant ¢ velocities this artificial viscosity coefficient
has the wrong sign and hence the scheme will not converge.

Hint: Apply equation (15.1.21) in curvilinear coordinates, as

ov -
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and
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Introduce in (8/0&)(p(U/J)) and show that this leads to a term

P U? p uv
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Problem 15.9

Show that the Murman-Cole equation (15.1.6) can be written as follows, with the
introduction of a switch coefficient u, such that uy=0for M<land pu=1for M>1:

(I_Mz)u ¢1]+52¢|1 ﬂxj(l_Mz)u(62¢|j ¢,_1,j)

Write out the discretized equation at a shock point, namely for M > 1 at (i — 1,j) and
M <1 at(ij).
Compare the shock point treatment with a conservative formulation

(I—Mz)u ¢u+52 ij_#ij(l—Mz)u ¢ij_.u(—"j(l M2). 1,j x¢|—1,j
Hint: Observe that equation (15.1.2) can be written as
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Problem 15.10

Apply the flux upwinding technique to the small-disturbance potential equation (13.2.12)
and compare with the Murman—Cole approach of the previous problem.

Problem 15.11

Apply the flux upwinding method to the steady Burgers equation (¢?), = 0 and compare
with the original Murman—Cole switch.

/’
Problem 15.12

Show that an explicit scheme applied to the Murman-Cole differencing (15.1.5) is
unstable by a Von Neumann analysis.

Apply also a Von Neumann analysis to the scheme (15.2.1) and show that it is
unconditionally stable.

Hint: Consider the scheme, valid for M > 1,
(1 - Mz)(¢:'_ 1. 2¢?-1 N ¢:IJ+1) + (¢g j+1 2¢:'lj+l + ¢;l_j_ 1) =0

and analyse the extreme cases ¢, = + = with ¢, =0, 7.

Problem 15.13
Derive equations (15.2.2) to (15.2.4), (15.2.6) and (15.2.7).

Problem 15.14

Verify the SLOR equation (15.2.5), and write explicitly the tridiagonal system of equations
to solve along the y lines.



124

Problem 15.15

Apply the SLOR technique to solve the flow around a cylinder following Problem 15.3.
Solve for free-stream Mach numbers of 0.2, 0.4 and for the supercritical values of 0.51.
Consider only half a circle on a symmetry plane.

Problem 15.16
Repeat Problem 15.15 for the scheme of Problem 15.4.

Problem 15.17
Write the discretized equations for the AF2 scheme in full, following equations (15.2.46).

Problem 15.18

Repeat Problem 15.15 with the ADI and AF2 methods and compare with the SLOR
iterations. Investigate the influence of the parameters o, w.

Problem 15.19

Apply the line relaxation to the matrix system obtained by the finite element discretization
with bilinear quadrilateral elements on a rectangular mesh. Notice the similarity and
differences with the equations obtained in Problem 15.14.

Hint: In the limiting case of an incompressible flow, the finite element tridiagonal matrix
structure is (1 —8 1) instead of (1 —4 1) for the finite difference schemes.

Problem 15.20
Applying the results of Problem 15.2, obtain equation (15.1.14).

Problem 15.21
Obtain the eigenvalues (15.2.34) from a Von Neumann analysis of the operator (15.2.33).

Problem 15.22

Apply the SLOR technique to solve the flow over a thin circular arc airfoil of 4 per cent
thickness applying the small-disturbance approximation.

Consider a uniform Cartesian mesh with the airfoil replaced by a segment 0 <x < 1.
The airfoil is introduced via the boundary condition u/v = d f/dx, where y = f(x) is the
airfoil’s surface. Solve for a free-stream Mach number of 0.6 and 0.85 with the artificial
viscosity concept.

Problem 15.23

Solve the same problem (15.22) and apply an artificial density method for the transonic
cases.
Solve the algebraic system of equations by line relaxations along the radii.

Problem 15.24

Introduce the non-isentropic corrections (15.3.10) into Problem 15.22 for the incident
Mach number of 0.85 and comment on the observed differences with regard to shock
position and intensity.



PART VI: THE NUMERICAL
SOLUTION OF THE SYSTEM OF
EULER EQUATIONS

The system of Euler equations constitutes the most complete description of
inviscid, non-heat-conducting flows and hence, is the highest level of
approximation for non-viscous fluids (see Section 2.7 in Volume 1). In this sense,
it should simulate physical flows in the limit of vanishing viscosities.

Although the inviscid flow models are obviously not of universal validity, the
importance of their accurate numerical simulation resides in the dominating
convective character of the Navier-Stockes equations at high Reynolds
numbers.

Therefore most, if not all, of the methods developed for the Euler equations
are also valid for the Navier—Stokes equations, with the addition of Centrally
discretized shear stress terms. Actually, many of them were originally developed
for the Navier—Stokes equations. It is only at very low Reynolds numbers, when
the flow is diffusion dominated, that specific methods for the Navier—Stokes
equations have to be defined. However, since the overwhelming majority of
flow situations encountered in industry and nature have high Reynolds numbers,
they are essentially dominated by convective effects and hence close to the Euler
equations, to which they reduce outside the viscous regions.

A large number of methods and approaches have been developed in order
to handle the complex, non-linear system of convection-dominated conservation
laws.

The history of numerical techniques for the resolution of the inviscid Euler
equations goes back to the early 1950s, with the first-order methods of Courant
et al. (1952) and Lax and Friedrichs (Lax, 1954). Since these early days, a very
large number of schemes have been developed, some of them having already
been introduced in Volume 1 as applied to the one-dimensional linear
convection equation.

The milestone for the modern development of numerical schemes for
time-dependent Euler (and also compressible Navier-Stokes) equations is
undoubtly to be found in the pioneering work of Lax and Wendroff (Lax, 1957;
Lax and Wendroff, 1960, 1964). An account of the earlier work in the field of
numerical developments for Euler equations can be found in Richtmyer and
Morton (1967).
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The second-order accurate Lax—Wendroff method has led to a whole family
of variants when applied to non-linear systems, characterized by their common
property of being space centred, reducing to three-point central schemes in
one-dimension, explicit in time and derived from a combined space and time
discretization. The most popular of these variants is due to MacCormack (1969)
and a more general family, with two parameters, has been developed by Lerat
and Peyret (1974).

When time accuracy is not required, as for steady-state calculations or when
the time-step restriction imposed by the conditional stability of explicit schemes
is much smaller than the typical time constant of unsteady phenomena, implicit
methods can be considered. Implicit generalizations of the Lax—Wendroff
schemes have been developed by Lerat (1979, 1983).

Many other variants can be developed in this framework and the bidiagonal,
compact schemes presented by MacCormack (1981), Casier et al. (1983) have
some attractive properties.

Another approach to space-centred schemes is based on a separate space and
time discretization, unlike the Lax—Wendroff family which is basically derived
from a combined space and time discretization. As a consequence, the steady-
state limit of the numerical solution depends on the time-step used in the
computation. Although the error attached to the time-step terms is of the same
order as the truncation error, because of the CFL condition, it nevertheless
represents a conceptual drawback, since it introduces a numerical parameter
in the predicted steady-state flow.

This drawback is avoided when the time integration is separated from the
space discretization. By performing first the space discretization, a system of
ordinary differential equations in time is obtained and the steady-state solution
is reached when the sum of the space terms vanishes.

Space-centred schemes (three-point schemes in one dimension) of
second-order accuracy in space belonging to this approach were initially
introduced with implicit, linear multi-step time-integration methods by Briley
and McDonald (1975), Beam and Warming (1976) and Warming and Beam
(1978).

An explicit scheme, applying a fourth-order Runge-Kutta time-integration
method has been introduced by Jameson et al. (1981), based on essentially
similar second-order space discretization methods.

The basic concept behind space-centred schemes is the application of Taylor
expansions and analytic continuation to equations that are essentially of a
convective nature and hence directionally biased.

Alternative discretization methods can be developed which relate to the
physical propagation properties of the solutions of the Euler equations. These
‘non-space-centred’ schemes are classified as upwind schemes in a global sense,
since many variants can be defined. Their common point is the relation establish-
ed between the characteristic propagation properties and the differencing such
as to apply directional space discretizations in accordance with the physical
behaviour of the inviscid flows.
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The first explicit upwind scheme was introduced by Courant et al. (1952),
and several extensions to second-order accuracy and implicit time integrations
have been developed. The flux vector splitting methods of Steger and Warming
(1981) and Van Leer (1982) can be considered as members of the same subgroup,
based on a directional discretization of the flux derivatives. A second subgroup
of schemes is in the line of Godunov’s (1959) method which solves, over each
mesh interval, the locally one-dimensional Euler equations for discontinuous
neighbouring states (the Riemann problem). This most original approach, which
introduces in the numerical discretization information from the exact, local,
non-linear solutions of the Euler equations, has generated a series of schemes
that introduce different approximate Riemann solvers (Engquist and Osher,
1980; Osher, 1982; Roe, 1981a, 1981b). They are also known as flux difference
splitting methods.

The extension of this approach has generated some remarkable mathematical
analysis, leading to a deep understanding of basic properties of the discretization
of non-linear systems of hyperbolic equations and to the introduction of
non-linear components in the discretizations. Essential contributions in these
directions are due to Van Leer (1974, 1979), Harten (1983, 1984), Osher (1984),
Osher and Chakravarthy (1984) and others.

The outcome of these investigations is the ability to generate numerical
algorithms which allow a high resolution of discontinuities, such as shock waves
and contact discontinuities, without oscillations. This last aspect is of consider-
able importance since the appearance of shocks, and other discontinuities, is a
frequent and essential phenomenon of high-speed inviscid flows.

Practically all the schemes for Euler equations behave in a satisfactory way
for stationary, smooth flows without strong gradients, but they can have very
different behaviours in the presence of shock waves, for instance. Therefore,
particular attention will be given to the numerical simulation of discontinuities
and to the behaviour of different schemes in dealing with these situations. Most
of the originally developed schemes, such as the Lax—Wendroff type of central
schemes, generate oscillations around shock discontinuities. Various methods
have been attempted to control or limit these oscillations through the introduc-
tion of artificial viscosity, which is required, on the other hand, by the entropy
condition to exclude non-physical shocks.

Another approach aims at preventing the generation of numerical oscillations,
instead of damping them after they have been allowed. This approach is based
on the concepts of non-linear limiters introduced initially by Boris and Book
(1973) and Van Leer (1974) and later generalized via the important concept of
total variation diminishing (TVD) schemes, introduced by Harten (1983), whereby
the variation of the numerical solution is controlled in a non-linear way, such
as to forbid the appearance of any new extremum. This concept, when applied
to central schemes, leads to particular forms of artificial viscosity without
empirical constants.

A simplified classification of some of the most important and widely applied
schemes is given in Table VI.1. This classification is by far not exhaustive and
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it is hardly possible to list all the existing schemes. A more complete list, of
essentially space-centred schemes, can be found in Yanenko et al. (1983, 1984)
and in Shokin (1983). This classification is to be viewed as a presentation of
general boxes where most existing schemes can be placed, with the aim of
providing some guideline to the reader.

Like all classifications, loopholes can be found. For instance, one can extract
concepts from the techniques applied to generate high-resolution upwind
schemes, following the total variation controlled (TVD) approach, and introduce
them in the space-centred schemes, generating in this way improved shock
resolutions in the Lax—Wendroff schemes (Davis, 1984; Roe, 1985; Yee, 1985,
1987).

It is our goal, in this part composed of Chapters 16 to 21, to present an
overview of some of the most important methods and their properties.

Chapter 16 will deal essentially with the algebra of the coupled non-linear
system formed by the Euler equations. Due to the strong coupling between the
five equations (in three dimensions) a large variety of options are open for the
selection of the set of basic variables. Each choice results in a different
formulation, with different Jacobian matrices of the fluxes with respect to the
basic dependent variables. Transformations from one set of variables to another
have to be defined, since one often has to deal with two or more sets simul-
taneously, particularly when treating the boundary conditions.

Chapter 17 will introduce the second-order Lax—Wendroff family of schemes,
characterized by the combined space-time discretization. The original explicit
versions and the two-step variants of MacCormack, Lerat and Peyret, as well
as the implicit variants of Lerat, will be discussed.

Chapter 18 is devoted to the explicit as well as implicit space-centred methods
based on separate space (second-order) and time discretizations. This covers
essentially the schemes of Beam and Warming and of Jameson. An essential
element with this approach is the introduction of artificial dissipation terms
required to maintain stability.

Chapter 19 discusses the important problem of boundary conditions for the
Euler equations.

Chapter 20 is devoted to a presentation of the first-order upwind schemes.
This covers the flux vector splitting methods and the Godunov-type schemes,
also known as flux difference splitting methods, based on either exact or
approximate solutions to the Riemann problem.

Chapter 21 introduces the reader to the techniques for the generation of
second-order upwind schemes. Since these schemes still generate numerical
oscillations in the vicinity of discontinuities a deeper analysis of the properties
of numerical discretizations is required. Some recent developments are presented,
leading to the introduction of non-linear components in second- or higher-order
schemes, in order to satisfy general requirements such as monotonicity, total
variation diminishing schemes, entropy conditions, which guarantee unique,
oscillation-free solutions of scalar conservation laws.
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Chapter 16

The Mathematical Formulation
of the System of Euler Equations

The system of inviscid conservation laws, called the Euler equations, forms a
first-order system of non-linear coupled equations, which can be written in
various equivalent forms.

Since the physical basis of the Euler equations is the expression of the
conservation laws for mass, momentum and energy, the basic formulation will
be derived from the integral form of these conservation laws. As shown earlier
in Chapter 6 in Volume 1, the conservation form of the equations is essential
in order to compute correctly the propagation speed and the intensity of
discontinuities, such as contact discontinuities or shocks that can occur in
inviscid flows. However, when dlscontmumes are not expected, non-conservative
formulations can be used.

Various algebraical formulations can be defined depending on the choice of
the dependent flow variables. The vectorf of variables formed by density,
momentum and total energy, obeying the conservation form of the equations,
and called the conservative variables. The more ‘direct’ variables, however, are
those that can be directly controlled experimentally and are defined as density,
velocity and pressure. These variables will generally be imposed by the physical
boundary conditions and are called the primitive variables. In addition, as the
system of Euler equations is hyperbolic in time, quantities that propagate along
characteristics can be defined and the system of equations can be transformed
to the characteristic form.

From the mathematical point of view, one can write equivalently the
equations in either form and transformation matrices between the three sets
can be defined.

161 THE CONSERVATIVE FORMULATION OF
THE EULER EQUATIONS

The natural form of the flow equations is connected to the quantities satisfying
conservation laws, as discussed in Chapter 1 in Volume 1. These quantities are
mass, momentum and total energy per unit volume, and the expression of the
Euler equations in terms of these basic variables constitutes the framework of
the conservative form of the inviscid flow equations.

132
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16.1.1 Integral conservative formulation of the Euler equations

This formulation has been derived in Chapter 1 (see Table 1.1 for a summary)
and was discussed in Section 2.7 in Volume 1.

For a three-dimensional flow through a volume Q, enclosed by the surface
S, the conservation laws are expressed by

0 —
—f de+§ pv-dS =0 (16.1.1)
otlg s
0 . ~ ~
—J. pT)’dQ+§ (P ®7T + p)dS =f pf.dQ (16.1.2)
at 0 s Q
d - -
—f pEdQ+§ pHv-dS =J pfvdQ (16.1.3)
otJq 5 Q

where f, are the external forces.

These equations can be written in a rotating frame of reference, when a steady
rotation @ is imposed on the references system, with an entrainment velocity
equal to @ x 7,7 being the local position vector. In this case the velocity 7 has
to be replaced everywhere by the relative velocity W=7 —®xT7, and the
Coriolis and centrifugal forces [ — 2p@ x W — p@ x (@ x 7)] have to be added
top f in the right-hand side of equation (16.1.2). In the energy equation (16.1.3),
the total energy E is to be replaced by

=2 (=, 2
E*=e+w__(wx r)
2 2

—E—@x7)7T (16.1.4)
and the stagnation enthalpy H is to be replaced by the rothalpy I, h denoting

the static enthalpy:

=2 = o2
I=H—(c‘6><7)'?f=h+w?—(wx2r)

(16.1.5)

while f remains unchanged in the right-hand side.

The system of equations (16.1.1) to (16.1.3) can be written in a compact form,
introducing the column hypervectors and tensors U and F,and T representing
the 3 x 3 unit matrix:

p
p pu
U=|pv|=]| pv (16.1.6)
pE pw
K pE

pr
F=|pt®@v+pl|=7U+
pvH

(16.1.7)

| o~ O
~
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as well as the source column Q:

0
0= ;lf", (16.1.8)
Pl
The integral compact form of the Euler equations becomes
3-[ Ud9+§ F-d§=J QdQ (16.1.9)
otlg s Q

The column vector U contains the conservative variables, while F contains the
conserved fluxes.

The system of equations (16.1.9) has to be completed by an equation of state
defining the thermodynamical properties of the considered fluid. In general, an
equation of the form p = p(p, T) with the definitions of the internal energy, for
instance e = e(p, T) or e = e(p, S), are required. For a perfect gas, one has p/p =rT
and e=c,T.

Various equivalent thermodynamic relations, valid for perfect gases, are given
in Section 2.1.1 in Volume 1.

16.1.2 Differential conservative formulation

In the vector form, the system of five Euler equations has been derived previously,
and can be summarized as follows, following Section 2.1:

p =
P 4 V-(o7)=0 (16.1.10)
at
d(pv) ,
6_+V (v Q@7 +pI) pfe (16.1.11)
0
(p )+V( v H)= pfe (16.1.12)
or in condensed notation:
Z—[:+V F=Q (16.1.13)

The Cartesian formulation of the above equations has been given in Section 2.7,
equations (2.7.1) to (2.7.2), and is repeated here for convenience.

16.1.3 Cartesian system of coordinates

We write equation (16.1.13) in Cartesian coordinates x, y, 2z, with the velocity
vector U having components u, v, w and magnitude

q=0T)?=u?+v? +w?)'/? (16.1.14)
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as

oU of dg oh
—+—-= 16.1.15
ot +6x+6y 0z Q ( )

The components f,g,h of the flux vector-tensor F are defined by equations
2.7.2)

pu pv pw
pu’+p puv puw
f=| puw g=|pvi+p h=| pow (16.1.16)
puw pow pw? +p
puH | pvH pwH
The Cartesian components of U are
p
pu
U=]pv (16.1.17)
pw
pE
and the equation (16.1.15) becomes explicitly
p pu pv pw 0
5 |ev s put+p P ;;vu a| P fox
—|pv{+—| pu |+—{p’+p|+—| pw |[=]|fy (16.1.18)
ot ox dy 0z 2
pw puw . pow pwe+p Jez
pE puH pvH pwH W,

In many applications, the Euler equations are discretized on arbitary curvilinear
meshes and the conservative formulation in general coordinates is therefore
required.

16.1.4 Discontinuities and Rankine-Hugoniot relations—entropy condition

Inviscid flows can undergo a discontinuous behaviour, namely shocks or contact
discontinuities can appear in the flow. These situations are described by solutions
of the integral conservation equations or by weak generalized solutions, in the
sense of distribution theories, of the Euler equations. The relations between
flow variables on both sides of a discontinuity surface moving with a velocity
C have been derived in Section 2.7.1. They are known as the Rankine—Hugoniot
relations and are given by equation (2.7.11) if it is assumed that the external
forces f, are continuous:

[F1'1,-C[UJT,=0 (16.1.19)

In this equation, 1, is the unjt vector normal to the discontinuity surface and
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Figure 16.1.1 Discontinuity surface

[A] represents the jump in the quantity 4 over the discontinuity surface when
following a streamline; that is

[A]=A4,— A, (16.1.20)

where the subscripts 1 and 2 designate respectively upstream and downstream
states with respect to the discontinuity surface (Figure 16.1.1).
If the discontinuity surface is defined by an equation of the form

I(x,0)=0 (16.1.21)
the unit vector along the normal is
1, vz (16.1.22)
IVZ|

By definition of the discontinuity propagation speed C, the following relation
must hold, expressing that the surface X = constant moves with velocity C:

7))
6_+C VE=0 (16.1.23)
and equation (16.1.19) can be written as
= = 0Z
[F]-VZ+E[U]=0 (16.1.24)
Worked out explicitly, the Rankine-~-Hugoniot relations become
[ “-“,,] —C-1,[p]=0 ‘ (16.1.25)
[(p7 1)0 +p1,]-C-1,[pT]=0 (16.1.26)
[Hpv1,]-C 1,[pE]=0 (16.1.27)

For a stationary discontinuity surface, these equations simplify to
[pv-1,]=0 (16.1.28)
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[T1p7-1,+[p]T,=0 (16.1.29)

[H]=0 (16.1.30)

Various forms of discontinuities are physically possible: shocks, where all flow

variables undergo a discontinuous variation, contact discontinuities and vortex

sheets, also called slip lines, across which no mass transfer takes place but where

density, as well as the tangential velocity, may be discontinuous, although
pressure and normal velocity remain continuous.

Seen from a reference system moving with the discontinuity, the following
properties result from the Rankine-Hugoniot relations.

Contact discontinuities/slip lines

They are defined by the condition of no mass flow through the discontinuity

Upy =Upy =0 (16.1.31)
and of continuous pressure ‘
[p]1=0 (16.1.32)
allowing non-zero values for the jump in specific mass and tangential velocity:
[p]1#0
16.1.33
[5] %0 (16.1.33

Shock surfaces

Shocks are solutions of the Rankine—Hugoniot relations with non-zero mass
flow through the discontinuity. Consequently, pressure and normal velocity
undergo discontinuous variations, while the tangential velocity remains
continuous. Hence shocks satisfy the following properties:

[p]#0
[p]#0
[v.]#0
[U,] =0

Note that since the stagnation pressure p, is not constant across the shock, the
inviscid shock relations nevertheless imply a discontinuous entropy variation
through the shock. This variation has to be positive, corresponding to
compression shocks and excluding thereby expansion shocks, for physical
reasons connected to the second principle of thermodynamics.

It has to be added that expansion shocks, whereby the entropy jump is
negative, are valid solutions of the inviscid equations since, in the absence of
heat transfer, they describe reversible flow variations. Hence, there is no
mechanism that allows a distinction to be made between discontinuities with
entropy increase (positive entropy jump) or entropy decrease (negative entropy
variation).

(16.1.34)
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A condition has to be imposed on the entropy in order to ensure that the
obtained solutions of the inviscid equations are indeed limits, for vanishing
viscosity, of the real fluid behaviour.

This condition is expressed as

G, —
a(ps) +V:(p7s)=0 (16.1.35)

This form of the entropy condition, in the absence of heat conduction effects,
ensures that unphysical solutions, such as expansion shocks, will not appear.
One has also

(%;+(T;’-V)s> >0 (16.1.36)

The introduction of this property into numerical schemes will be presented in
Chapter 21.
Ry

16.2 THE QUASI-LINEAR FORMULATION OF
THE EULER EQUATIONS

In order to investigate the mathematical properties of the system of Euler
equations, it is necessary, following Chapter 3 in Volume 1, to write these
equations in a quasi-linear form. The Euler system of equations contains only
first-order derivatives and if the external forces f, are independent of the flow
gradients, the system of Euler equations is of first order in the variables U.

16.2.1 The Jacobian matrices for conservative variables

The quasi-linear form of equations (16.1.13) or (16.1.15) is written as

ou —+ (aF ) VU=0 (16.2.1a)
ot
or
U
E+A VU 0 (16.2.1b)

or explicitly

?£+ U Ba—U+C— ) (16.2.2)
ot ax dy 0z

where A, B, C are the three Jacobian matrices of the flux vector F. They can
be condensed into a vector form A (4, B, C):

A= (16.2.3)

| D
|5
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having the components A4, B, C defined by

A=if- B=@ C=—l?£ (16.2.4)
ou ou ou

The flux components f,g,h have the very remarkable property of being

homogeneous functions of degree 1 of the conservative variable vector U in the

case of a perfect gas or, more generally, for fluids satisfying the relation

p=pf(e (16.2.5)

where e is the internal energy (Becam and Warming, 1976; Steger and Warming,
1981). This implies that

F(AU)=AFU) for any 4 (16.2.6)
and by differencing with respect to 4 and setting A = 1, one obtains the relation
Fo=Lu-1v (16.2.7)
ou

or in component form
=AU g=BU h=CU (16.2.8)

Inserting these relations in the conservative form of equations (16.1.13) or
(16.1.15) shows that one can write the Euler equations in the form

U d(AU) oBU) o(CU)

—+ + + =

ot 0x dy 0z
Compared with equation (16.2.2), it appears that it makes no difference whether
the Jacobian matrices A4, B, C are inside or outside the derivatives as long as
the functions are continuous. However, from the numerical point of view, the

two formulations do not lead to identical discretizations. One must have the
following identities, using condensed notation:

(AU), =AU, (16.2.10)

0 (16.2.9)

Then
AU=0 (16.2.11)
and similarly for B and C, namely \
BU=C,U=0 (16.2.12)
The homogeneous property is demonstrated by writing the vector U and the
fluxes F as a function of the conservative variables p, 7 = p7, ¢ = pE. Hence, with

P m

U=|m = (16.2.13)
&

n
I
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the flux vector components can be written as

m
2

and similar relations for g and h:

Since

2
e=pe+—

(16.2.14a)

(16.2.14b)

(16.2.14c)

(16.2.15)
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the internal energy e is a function of degree zero in U and therefore the above
fluxes will be homogeneous of degree one in the variables p, m, ¢ if the pressure
p is of degree one. This implies that p can be expressed as the density times a
function of degree zero. This is expressed by the relation (16.2.5).

Some methods do explicitly use this homogeneity property in the
discretization scheme (Steger and Warming, 1981), and it should be kept in
mind that the relation (16.2.5) might not be true for real fluids, such as air at
very high temperatures, combustion gases or steam, for instance.

The Jacobian matrices can be determined explicitly if the fluid constitutive
relations are specified. For a perfect gas assumption, one has (see Section 2.1.1)

=2
p=@—1pe=(y— 1)(s - '2"—p) (16.2.16)

The rather abstract compact notation 0F/dU is to be interpreted as
representing the three Jacobian matrices A4, B,C formed by assembling the
column vectors obtained by differencing the corresponding flux components
with respect to the dependent conservative variables p, m, e. For instance,
of of of of of| _|of of of
dp’om’ on’ 01’ oe| |dp’ om’ de
where each derivativeis a 5 x 1 column. The compact notation df/d#i represents
a 5 x 3 matrix, which is introduced in order to obtain a formulation valid for
any number of space variables, from one to three.

A detailed computation gives, for f,

0

m2

p?
of _ -—
op

(16.2.17)

o
op

(16.2.18)
op

m@+m+m
p? pop

The derivatives of p with respect to the conservative variables are obtained
from the above relation (16.2.16). Hence,

op m o y—1_

P - _ 16.2.19
5= )2p2 57 ( )
a =T

P =)l _y—1pT (16.2.20)
om P
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Py (16.2.21)

The notation dp/om represents a 1 x 3 line vector and since the vectors are
considered as columns, 7" or 7T are line vectors, T indicating the transpose.

The first column of the Jacobian A becomes

0
_mt ytm
PP 2 p?
mn
of -—
6p— p (16.2.22)
ml
G
m m?
——zl:)’ﬁ—(?—l)—]
p p

One obtains for the 5 x 3 matrix df/dm the following form:

1 0 0
m m n 1
2——(-1-— -@-)- —-@-1-=
P P P p
n m
e — 0
9 _ p ’ (16.2.23)
oni 1
- 0 e
P P
ye y—1_, 2 mn Im
@ +2 —p-)—= —-@-15
> 2 ( m*) ~(y )p2 b4 )p2
which can be written out explicitly as
1 0 0
B—7u -1 —-@-Dw
0
9 _ v " (16.2.24)
om w 0 u
yE—y;1(71°2+2u2) —@—Duw —(—uw
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Finally,
0
y—1
i)
—f= 0 (16.2.25)
Oc 0
yu

and the Jacobian matrix A can be written in the general form

0 1 0 0 0
PR Al O
—u +-2—v B—yu —@-1r —-@F-Ow y-1
A= — uv v u 0 0
—uw w 0 u 0
-1
—uDE=( =7 YE-T—@+2) —-Dw —¢-luw

(16.2.26)

The other Jacobians B and C are obtained by cyclic permutation of u, v, w:
0 0 1 0 0
—uv v u 0 0

s | ST —eme Gom —G-Dw -1
- ow 0 w v 0
-1

—v[YE—(y—1)7?] —-(@—Duw yE— y—z——(Tf2 +20%) —(y—1ow 9y

(162.27)
0 0 0 1 0
—uw w 0 u 0
— oW 0 w v 0
C=| _pa?lpe —@-Du —(-1p B-yw y—1
—WOE—(G =171 —(—luw —(—low yE— %w’ +2w%)  yw

(16.2.28)

Note that E can also be expressed as E =c?/y(y — 1) + 72%/2.

The structure of the conservative Jacobian matrices 4,B,C is quite
complicated, so much so that in order to assert the hyperbolicity of the Euler
equations it is necessary to find the eigenvalues of linear combinations of 4, B, C.
Indeed, referring to Chapter 3 in Volume 1, the Euler equations will be
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hyperbolic with respect to time if the matrix K defined by
K=AK=A%K+Bx,+Ck, (16.2.29)

has real eigenvalues for any set of values of k.

Example 16.2.1 One-dimensional Jacobians in conservative variables

For the one-dimensional Euler equations, the system contains three equations
for the vector

p p
U=|pul=|m (E16.2.1)

pE €

and the flux vector F reduces to its x component f:
pu m
f={pw*+p|=|m*/p+p (E16.2.2)
m o puH (e +p)

¢ The Jacobian matrix A = df /U is obtained from equation (16.2.26) by removing

focun

the third and fourth lines and the third and fourth columns (associated with
df/on and 8f/dl). Hence, one has

0 1 0

u2
—(3—)’)3 B—7)u y—1

A= (E16.2.3)

—1
(¢ — Du® —yuE )’E~--3)’Tu2 yu

Example 16.2.2 Two-dimensional Jacobians in conservative variables

. . . . orm.
In the two-dimensional case, the conservative variables from the vector

p p
U= Z‘; = ': (E16.2.4)
pE €

The Jacobians A and B are obtained from equations (16.2.26) and (16.2.27) by
removing the fourth column and line in both matrices. This leads to

0 1 0 0
e —Gg-1o -1

A= —uv v u 0

—yuE 4+ (y — Duv? yE— },—:2_——1(02 +3u?) —(y—Duv yu

(E16.2.5)
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0 ' 0 1 0
—uv v u 0
-3, y—1
B=|1"2r+ 1y —(y—Du B—mw y—1
2 2
— -1
—pwE+(y—1)ov2 —(y— Du ):E—l’z—(u2 +3v¥)

(E16.2.6)

16.2.2 The Jacobian matrices for primitive variables

It is easier to obtain the eigenvalues of the system of Euler equations when
these are written in non-conservative form as a function of the primitive variables
p,v,p. Referring to Table 1.1, Chapter 1, one can write the inviscid flow
equations in the absence of heat conduction and heat sources as

9 L
a—’:+(Tf‘Vp)+pV'Tf=0

—

7 - ~
W EVT+ =T (16.2.30)
ot p

E = = -
2 EVE+ V@D =TT
ot p

The last equation has to be transformed to an equation for the pressure p. In
order to obtain this equation, the isentropic assumption will be introduced,
through the relations ~

e=e¢(p,s) (16.2.31)
and

a_p =c? (16.2.32)

pls

defining the speed of sound c. If the flow is isentropic, one can write for any
variation de:

de = Ge -0p (16.2.33)

and the isentropic derivative de/dp|, can be deduced from the thermodynamic
relations

1
Tds=dh—d—p=de+pd<—) (16.2.34)
P p
Introducing the isentropic condition, the isentropic derivatives satisfy

dh— dp =de+ pd<l> =0 at constant s (16.2.35)
p p
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Hence
on _1 (16.2.36)
opl, »p
and _
de| _oh _1+£2<"_P> -2 (16.2.37)
opl, opl, » P*\0p/, P’

The energy equation becomes, after subtracting the momentum equation
scalarly multiplied by 7 and introducing the definition of E =e + v2%/2,

%+(U-V)p+pcz(V'F)=0 (16.2.38)

Actually this equation, compared to the continuity equation, is an alternative
form of the isentropic law, namely

dp=c?dp (16.2.39)

where the differentials in dp and dp designate the total convective derivatives
(0/0t + T-V). The system (16.2.30) becomes

%’t3+ @-V)p+p(V-T)=0

T FVT V=T, (16.2.40)
ot p

» = -
a—’: +(TV)p + pc2(¥-7) =0

With the primitive variables vector V,

p
p m
V=|7]|= p (16.2.41)
P m?2
D e=——
v )( 2p>
one obtains the system of Euler equations in the form
v == =
.;374.(,4 -V)V=0 (16.2.42)

or

oV oV 0V OV ~
—+A—+B—+C—= 16.2.43
ot * ox dy + 0z ¢ ( )

where A4, B, C are the components of the Jacobian vector matrix A. Compare
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with the expression for the Jacobian A4, it is obvious that .21'_ has a much simpler
structure. Explicitly, one obtains for the components (4, B, C),

u p
u IS ¥/
A= Cwo (16.2.44)
. u
pc? u
and similar relations for B and C:
v p
v - .
B= v 1/p (16.2.45)
C oy
pc? v
w p
w .
C= w (16.2.46)
w 1/p
pc w

16.2.3 Transformation matrices between conservative and
non-conservative variables

The Jacobian matrix of the transformation from the conservative to the
non-conservative variables is defined by

U

= 16.2.47
3V ( )

and its evaluation requires the explicit formulation of the fluid constitutive
relations. It is important to notice that the definition of the non-conservative
Jacobians does not require an explicit definition of the fluid constitutive relations,
and therefore has a larger validity range; that is they are not necessarily
connected to a perfect gas assumption as is the case with the conservative
Jacobians A. For a perfect gas, using relation (16.2.16), one obtains the
condensed form (see Problem 16.7):

0
7 oI 0
m=|2U U U v ) (16.2.48)

“lop .av op| |32
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and its inverse

1 0 0
7 1-
_ 7 0
S LA A4 » » (16.2.49)
op om O¢ -
v s
=D G- y-1

The determinant of M ~1 is (y — 1)/p; hence
detM =P (16.2.50)
y—1
The relations between the conservative and the non-conservative jacobians A

and A can be expressed through a similarity transformation with matrix M.
Indeed, introducing the Jacobian matrix M in equation (16.2.1) leads to

M(;—t/+ZM-VV=Q

or, after multiplication by M1,

M ATV =M (162.51)

Identifying with the non-conservative form, equation (16.2.42), gives the relation
A=M"'AM o A=MAM! (16.2.52)
and for the source terms

—~

0=M"1'Q (16.2.53)

With regard to the analysis of the eigenvalues of the Euler system of equations,

it is easier to work with the non-conservative Jacobians 4, which are of a simple
structure. From the above transformations, the matrix K = 4 - and the matrix

K = A ‘% have the same eigenvalues, since they are connected by the similarity
transformation

K=M"'KM (16.2.54)
Therefore, the characteristic properties of the system of Euler equations will be
analysed on the non-conservative, primitive variable formulation.
Example 16.2.3 Non-conservative Jacobians in one and two dimensions

For one-dimensional flows, the transformation matrix M reduces to

1
_|v e
M= f ) 1 (E16.2.7)
2 P y—1
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and its inverse M ~! is obtained from equation (16.2.49):

1
u 1
M= P P
-1
Yoo —(y—-Du y-—1
2
The Jacobian A becomes
u p 0
~ 1
A=10 u -
p
0 pc? u
In two dimensions, one has
1
u p
M=|v - p
2 - 1
2 PP T
1
u 1
P P
M—1=—\ v l
P p
y—=1 ,
@+0v*) —@-Du —@—-1v y—-1
and for the two Jacobians 4 and B:
u p
1
~ u -
A= P
-
pc? u
v P
o -
B= 1
v —_—
P
pct v
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(E16.2.8)

(E16.2.9)

(E16.2.10)

(E16.2.11)

(El16.2.12)

(E16.2.13)
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16.3 THE CHARACTERISTIC FORMULATION OF THE EULER
EQUATIONS—EIGENVALUES AND COMPATIBILITY
RELATIONS

The eigenvalues of the matrix K = 4 X, associated to an arbitrary direction of
propagation x, define for a large part the behaviour of the solutions to the
Euler equations. It is therefore essential to have a clear understanding of the
characteristic properties, since they represent essential aspects of inviscid flows,
namely the propagation of disturbances. We refer the reader to Chapter 3 of
Volume 1 for a general introduction to hyperbolic properties and charac-
teristics.

For the first-order system of equation, written in non-conservative form with
the primitive variable V, equations (16.2.42) and (16.2.43),

a-V+(§'-V)V='Q' (163.1)

or
oV 0V =3V X0V =«
ot Ox Oy 0z ¢ ( )

the condition for hyperbolicity is expressed by the existence of simple wave-like
solutions of the form

V=VelSto < Pel®-a0 p_ [ (16.3.3)
The function

S(X,t) =K% — ot (16.3.4)

repr'e@ents the phase of the wave propagating in the direction ¥, with a pulsation
w (for an observer moving with the group velocity of the wave packet).

Wave-like solutions will exist if the eigenvalues of the matrix K=A4 ‘¥, for
arbitary ¥, are real with linear independence of the corresponding left
eigenvectors T.

If 4., denotes an eigenvalue of the matrix K, obtained from

det|Al— 4 %|=0 (16.3.5)

the left eigenvectors /Y, defined as line vectors in the five-dimensional space of
the vectors V, are solutions of

T9K = 3,1  no summation on j (16.3.6a)
or explicitly

A K=y ijk=1,...,5 (16.3.6b)

with summation only on i.
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Figure 16.3.1 Characteristic surface in space at a given time ¢

16.3.1 General properties of characteristics

To each eigenvalue 4 ;(¥) and vector ¥ one can associate a characteristic surface
S(x, t) = constant (Figure 16.3.1), normal to the vector ¥ at instant t and defined
by the relations

8,8 = — 4,;(%) (16.3.7)
Vs=%x (16.3.8)

To each eigenvalue A;; one can associate an infinity of characteristic surfaces
by varying the vector ¥ up to a normalization constant.
From the definition of the eigenvalue 4,; one has

0= +4; (16.3.9)
Hence the eigenvalues of K represent the frequency, up to a factor 2x, of the
propagating wave. This wave propagates with a phase velocity @, defined by
the usual wave relations

a= (16.3.10)

K

T=al,=+iy— (16.3.11)
K

in the direction of ¥, that is normal to the constant wave phase surface
S(X,t) = constant.

Characteristic speed of propagation
If one defines a direction, locally tangent to the phase velocity,

dx _. X
—=T=ly—

™ " (16.3.12)
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the characteristic surface will follow this direction, since

d—§=0 alonggi=?1' (16.3.13)
dt dt
Indeed, along this curve,
ds = ’ _—
a—t=6,S+a-VS= —Ap+axK=0 (16.3.14)

by definition of @. This expresses also that the four-dimensional space—time
vector (@, 1) lies in the surface S(X,f) = constant since — A, =S, is the time
component of the normal n to S(x,t) with components (n,n)=(VS,n)=
(¥, — A;)- Hence, the characteristic surface attached to a normal x propagates
in this direction with a velocity a, the characteristic velocity.

The relation (16.3.12) above can be considered as defining the characteristic
surfaces.

For each eigenvalue (j), one has an infinity of characteristic surfaces,
propagating in the arbitrary direction K. The envelope of all these wave surfaces
obtained by varying ¥ constitutes the Mach conoid and the curves of tangency
between a wave surface and the Mach conoid are called the bicharacteristics.
The Mach conoid, the bicharacteristics and the wave surface S(X,¢) are all to
be considered in the four-dimensional space-time (X, ).

Since the bicharacteristics lie in the wave surface S(X, ) = constant, they must
obey the following condition:

-—%—I:Am +b%=0 (16.3.15)
where b and b, are the space—time components of the bicharacteristic. Since
one can always choose 9,b = 1, one has the condition

bK =1 (16.3.16)
One solution is b =@, which was just shown to be on the wave surface, but

this is not the bicharacteristic since @ is the direction of k. If the eigenvalue
can be written as

Ap=¢€¥xK (16.3.17)

with @ not in the direction of ¥, then the intersection of the characteristic
surface and its envelope (the Mach conoid) is given by the particular value

b=7¢ (16.3.18)
The bicharacteristic direction is therefore defined by
b:(e,1) (16.3.19)

On the other hand, the characteristic surface is also defined by the property
that an appropriate linear combination of the equations will result in a form
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that contains only derivatives in directions lying in this surface. As shown in
Chapter 3 in Volume 1, when this is the case, the coefficients of the linear
combination are the left eigenvectors V. The transformed equation, given by
equation (3.3.6), becomes here, for the eigenvalue Adiys

Fﬁfgm«f Ty =g (16.3.20)

and is the compatibility equation for the eigenvalue A ;. Since the eigenvalue A,
is a function of the normal vector ¥, there is an infinity of compatibility relations
that can be associated with a given eigenvalue. As will be discussed later, certain
compatibility relations can be more significant than others. In particular, for
points lying on a given surface, for instance an inlet or an outlet boundary of
a computational domain or a solid wall boundary embedded in a flow, the
direction of propagation normal to these surfaces is of particular significance.

16.3.2 Diagonalization of the Jacobian matrices

It is seen from equation (16.3.6) that a matrix L™! can be defined that will
diagonalize the matrix K. Indeed, constructmg a matrix L™! with the left
eigenvectors 1Y, that is the jth line of L™ is the left eigenvector IV, equation
(16.3.6) for all the eigenvalues grouped together can be written as

L 'K =AL" (16.3.21)
where A is the diagonal matrix of all the eigenvalues; that is
Ay
4z
A= . (16.3.22)
A
where all 4 are functions of ¥. Hence with A = A(¥X) one has
K=LAL! (16.3.23)
or =
A=L"Y4 %)L (16.3.24)

It is of partlcular 1mportanoe to notice here that one can diagonalize any linear

combination A4- Ky + B K, + C- K,= A K by the appropriate matrix L(x), but it
is not possible to dlagonahzc simultaneously the three jacobians A4, B, C. By
selecting k., =1, k, = k, = 0, a matrix L, will be defined which will diagonalize
A and similarly a matrix L, defined by x, =0, x,=1, x,=0 will diagonalize
B, but it will be shown in the following that L,# L2 and hence A4 and B cannot
be diagonalized by the same matrix. This follows from the fact that the Jacobian
matrices 4, B, C actually do not commute and have, therefore, not the same
set of eigenvalues.
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Right eigenvectors

Since the matrix K = 4 - is not symmetric, there exists a set of right eigenvectors
79 associated with the same eigenvalues A;,. These column vectors r" are
defined by
Kf? =4,  no summation on j (16.3.25a)
or explicitly
Kyfd = 4,7"  ijk=1,..,5 (16.3.25b)
with a summation only on k. ~
Comparing with the equations for the left eigenvectors [, it is seen that,
grouping all the vectors 7 in a matrix R, where the jth column is the vector
7, the above equations can be written as
K-R=RA (16.3.26a)
or .
K=RAR™! (16.3.26b)

Hence, the matrix of the right eigenvectors is the inverse of the matrix L™! of
the left eigenvectors; that is

R=L (16.3.27)
From equations (16.3.25) one has the orthogonality property between the left
and right eigenvectors
.50 =5, (16.3.28)
which is another expression for the identity LL™! =1.

The right eigenvectors have the important property to be proportional to
the intensity of the propagating disturbance, as seen from equation (3.3.13).

16.3:3 Compatibility equations

With the introduction of the matrices L and L™!, one can write the compatibility
equations in a compact form, since equations (16.3.20) can be grouped as

Fo. ~
(L8, + L 'A-V)V=L"1Q (16.3.29)

It is easy to see that the compatibility relations can be expressed as a function
of the conservative variables by application of the matrix L™!M ™. Indeed, the
above equation can be written as

LM~ '3, + A-VW=L"'M"'Q (16.3.30)
The matrix P defined by
P '=L"'M"* and P=ML (16.3.31)

plays the same role, with respect to the conservative variables, as the matrix L
with the primitive variables.
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In particular, the matrix P will diagonalize the matrix K = A% in the same
way as L diagonalizes the matrix K = 4 -%. Indeed, from equation (16.3.24) and
the relation between 4 and 4. ,

A=M"'AM (16.3.32)
one has
A=L"'M~Y4-KX)ML=P~'KP (16.3.33)

The lines of P! are therefore the left eigenvectors of K, while the columns of
P are the right eigenvectors of the same matrix, associated with the conservative
variables.

The compatibility relations (16.3.29) lead to the introduction of a new set of
characteristic variables.

They are defined as a 5 x 1 column vector by the relation valid for arbitrary
variations ¢ (either 6, or V)

SW=L"1V (16.3.34a)
or explicitly
Sw, =Y 1M6y, (16.3.34b)

Hence, the component dw, of dW is obtained from the linear combination of
the primitive variables with coefficients equal to the components of the kth left
eigenvector. Inversely, one has

oV =LéW (16.3.35)
the compatibility relations can be written as follows:
L"%‘;+(L“Z DL Wv=L"'{ (16.3.36)
or
Z—V:',+ L AL)VW=L"0 (16337)

Note that the characteristic variables are now associated with a given direction
of propagation ¥, and therefore these variables are a function of ¥.

The definition (16.3.35) expresses the increments dW as a linear combination
of the increments of the primitive variables, §¥, with coefficients equal to the
components of the left eigenvectors. Since the left eigenvectors are generally
functions of the flow variables, the coefficients are not constant. Therefore, the
variables W will exist if the Pfaff conditions of integrability of a differential

s

form are satisfied; see, for instance, Narasimhan (1973). This is the case when rreq

the coefficients of the L matrix are constant, that is for linear equations, whereby
W is defined by

W=L"'v if L™ constant (16.3.38)

i3 missin

(r 2

3)
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The characteristic variable W can also be defined for non-constant coefficients
if no more than two differentials appear in the linear combination (16.3.34).
This is the case for the one-dimensional time-dependent Euler equations, or for
supersonic stationary two-dimensional flows. For more general flows, the
integrability conditions cannot be satisfied and the variables W cannot be
defined. However, W always exists and we will maintain the above
characteristic formulation (16.3.37) as a shorthand notation for the compatibility
equations, keeping in mind that in general only the variations é6W are
meaningful.

The characteristic variables can also be related to the conservative variables
U by

SW=P~ 18U (16.3.39a)

or
oU=PoéW (16.3.39b)

Hence, the relation between the three sets of variables can be summarized as
shown in Figure 16.3.2.

One can also observe the particular situation of one-dimensional flows, where
the matrix L 'A L is diagonal, so that the characteristic equations (16.3.37)
become decoupled and appear as a set of scalar equations. This is a unique
feature of one-dimensional flows.

Equations (16.3.39) can also be read differently, if one remembers that the
columns of L (or P) are the right eigenvectors of K (or K ). Hence,
equation (16.3.39) reads :

s ;
SU =Y owr® (16.3.40)

k=1
where éw, are the components of the column vector dW. This expresses the
decomposition of U in simple waves described by the right eigenvectors of the
matrix K, with amplitudes equal to the characteristic w, component. The above

Figure 16.3.2 Relation between the con-
servative variables U, the primitive vari-
ables V and the characteristic variables W
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relation is at the basis of a most original method developed by Roe (1981), to
be discussed in Chapter 20.

The numerical schemes and their properties, as well as the mathematical
formulation of the equations, are dominated by the hyperbolic character (in
time) of the system of Euler equations. Since the basic phenomena are of
propagation or convective nature, the characteristics of the system and their
properties will play an essential role in the mathematical description and in
many numerical discretization techniques.

The situation is actually more complex with respect to the space variables,
where the stationary form of the Euler equations is of mixed or hybrid type,
depending on Mach number and the considered spatial direction. This explains
why nearly all the schemes developed for the numerical solution of the Euler
equations take as a starting point the time-dependent formulation, even when
only the steady state is of interest. In this case, the time evolution of the system
is of no importance and the goal of an efficient numerical scheme will be to
reach the steady-state conditions in a minimum of time steps.

164 CHARACTERISTIC VARIABLES AND EIGENVALUES
FOR ONE-DIMENSIONAL FLOWS

One-dimensional flows play an important role in the computation and analysis
of solutions to the Euler equations. They are altogether simple enough to
warrant a detailed analysis of the non-linear propagation effects and
representative of higher-dimensional flows, allowing in many cases local
applications of one-dimensional properties. In particular, the application
of local one-dimensional concepts for the definition of boundary conditions
is an extremely important outcome of the properties of one-dimensional
characteristics.

The most general case is described by the quasi one-dimensional flow in a
channel of varying cross-section S (Figure 16.4.1). The conservative form of the

Figure 16.4.1 Quasi one-dimensional flow in channel of varying cross-section
S(x)
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Euler equations can be written as follows (see, for instance, Shapiro, 1953):

2pS) , 3(puS) _

0
ot Ox
d(puS) d(put+p)S dS
=p— 16.4.1
T ox Pax d64.1)
0(pES) +6(;014HS)=0
ot 0x ‘

This system can be transformed into primitive variables p,u, p, leading to the
system (see Problem 16.8)

ot ox =~ 0Ox S dx
" du ou 1dp ‘
— + —t—-—= 16.4.2
o Vox pox (1642
op p ,0u puc®ds
+u—+pet—= - —
ot “ ox p ox S dx
Defining the source vector 0,
~ t
g=| o |L98 | (16.4.3)
2. | Sdx
—pctu

the equations can be written for the primitive variable vector V = (p,u, p):

2N 2 '
ot 0x ( )

where the Jacobian matrix A is given by equation (E16.2.9).

16.4.1 Eigenvalues and eigenveétors of Jacobian matrix

The vector ¥ is one dimensional, ¥ = xT,, and since its magnitude is arbitrary,
one can take k = 1. The eigenvalue equation (16.3.5) becomes

det|AI— 4| =0 (16.4.5)

or

=
|
~
h~)
o

=0 (16.4.6)

o |-
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A direct calculation gives the eigenvalues

A.l=u
A=u+c (16.4.7)
Ay=u—c

+ and the three left eigenvectors of A, defined up to an arbitrary normalizations,

are

=

I

l(

”=<a 0
2)=<0 ﬁ
(0 é

3)_

)

(16.4.8)

where a, §,0 are three normalization coeflicients.

Example 16.4.1 Determination of the left eigenvector of Jacobian matrix A

The left eigenvectors 19 are defined by

(E16.4.1)

Writing this equation explicitly for a given eigenvalue 4, the components /,,1,, 1,
of the left eigenvector [ are solutions of

(ll ’ 12’ 13)

For the first eigenvalue A =4,

u p

0 u

2

0 pc

we obtain

ul,

ply +uly +pcily=ul,

0
1
o= Ay, 1, 1) (E16.4.2)
u
=ul,
(E16.4.3)

llz +uly =ul,
P

The last equation gives I, =0 and the first one is satisfied for arbitrary values
of ;. Taking I, = a as an arbitrary normalization factor, the second equation

gives I3 = — a/c?.
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For the second and third eigenvalues 4 = u + ¢, we obtain the system
ul =wuzxol,

ply +uly + pctly = (u+ o), (E16.4.4)

1
—lz +ul3 =(u'_|'C)l3
p

The first equation shows that I, =0, and the two others are satisfied for
I, = + pcly. This leads to equations (16.4.8).

Taking a = f = 8 = 1, the following diagonalization matrix is obtained:

1
1 0 —
-1 1
L 1=]0 1 — (16.4.9)
pc
01 -1
pc
and
1 P _°P
2c 2c
1 1
L=|0 -. — 4.
> 2 (16.4.10)
o PC _pe
2 2

Note that the columns of L are the right eigenvectors of A, corresponding to
the normalization of L™1.

The conservative Jacobian matrix 4 can also be diagonalized by application
of the transformation matrix P, following equation (16.3.33). With the above
normalization one obtains, with M ~! defined by equation (E.16.2.8),

y—1u? u y—1
118 S A
2 ¢? -, )cz c?
- -1
P l=L"'M1'= (uuz—uc)i L=y 1
2 pc  pc pc
- 1 -1
—(7—1142 +uc>i —[c+(y—1)u] _7?
2 pc pc pc

(16.4.11)
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The matrices L™! and P! corresponding to other normalizations are obtained
by multiplying the first row by a, the second by § and the third by d.

Similarly, one obtains the inverse of the above matrix by direct multiplication
of M and L, with M defined by equation (E16.2.7):

1 L _r
2c 2c
P=ML=| u £(u+c) —ﬁ(u—c)
2 2c
u? p( 2 2 ) p( 2 2 )
— | =tuc+ — | =—uc+
2 2c\2 y—1 2c\ 2 y—1

(16.4.12)

The matrices L and P for other normalizations are obtained by dividing the
first column by «, the second by f§ and the third by 4. A normalization that is
often found in the literature is a=1, f=—6= l/ﬁ (Warming et al., 1975).
Note also that the terms u?/2 + c?/(y — 1) = H, the stagnation enthalpy.

The lines of P~ ! are the left eigenvectors of the Jacobian A in the conservative
variables, while the columns of P are the right eigenvectors of the same matrix,
associated with the same eigenvalues.

The compatibility relations are obtained after multiplication from the left by
the matrix L™!, following equation (16.3.29). With

u
u 0 ot c—z
~ 1
L'A=|0 u+c —(u+o) (16.4.13)
pc
1
0 u—¢c ——(@—0
pc
we obtain the compatibility relations from equations (16.3.36):
L-la—V+(L“‘ZL)L-19K=L-*é (16.4.14)
ot 0x
or ‘
L“a—V+AL"a—V=L‘1Q (16.4.15)
ot 0x

introducing the diagonal matrix of the eigenvalues A

u

A= u+c (16.4.16)
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Explicitly, these equations are written as

dp 10p dp uop
— — —— u —3
o ¢t ox crox

ou 10dp ou 1 6p> ucds

—F——4 Ut —F+—— |=——— 16.4.17
ot pcot (v c)(ax pcox S dx ( )
B_Ld (L) wds

ot  pcot dx pcox S dx

16.4.2 Characteristic variables

Applying the definition (16.3.34), the following definitions of the characteristic
variables W = (6w,, dw,, dw,)T, with 6W representing an arbitrary variation,
either 9, or d,, are obtained from W = L™ 16V: {.,«-@6'*-9),

e ) Se 1
‘-‘) S\/-. 30) 5W1=6P“75P
f Y ¢
ow, =0u+ -1—5p (16.4.18)
pc

dwy = 0u— i<Sp
pc

The characteristic form of the one-dimensional Euler equations can be decoupled
in the W variables and written as

ow ow

ZHA—=L"1Q 16.4.19a
ot ax ¢ ( )
or
" + : +{L el | a8 16.4.19b
— c = wy| = | —uc| 4,
a | 2 " ax | Sax )
W, ufa 3 c
-G

Riemann variables

The decoupling of the equations shows that the quantities w; propagate along
the corresponding characteristics with the speed 4. Hence,

1
ow, =dp ——0p
c

propagates with velocity u along the characteristic C, defined by dx/dt =u.
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This characteristic is the path line of the fluid. On the other hand,
1
pc
=du+ cop
P

propagates with velocity u+c along the characteristic C, defined by
dx/dt =u+c and

owy = 5u—i6p
pc
= du —cég
p

propagates with velocity u—c along the characteristic C_ defined by
dx/dt=u—c. The C, and C_ characteristics are also called Mach lines
(Figure 16.4.2).

When the right-hand side of the equations is zero, the corresponding
characteristic variables are strictly conserved during their propagation along
the characteristic; that is the quantity w, satisfying

ow ow
—+A—= 16.4.20
at ox ( )
remains coné(:fmt along the characteristic C, defined by
d_. (16.4.21)
dt

Figure 16.4.2 Characteristic lines for a one-dimensional flow
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since along C,

dw_ow _ dxdw_ (164.22)
de ot dt ox

The variables w are also called Riemann variables and Riemann invariants when
they remain constant. The system of equations in characteristic form can also
be written as follows:

d©p — cl—zd‘o) =0 d©® =9, + ud,
i Larp= %8 ymg e,  (16423)
pc S dx
d("u——l—d(”p= +t—‘£d—s d) =0, + (u—c)o,
pc S dx
with the definitions of the three characteristics
onCy: dx =u
dt
d
onC,: =u+c (16.4.24)
de »
onC_: 9{ =u—c¢
de

It is of interest also to notice that the first characteristic equation expresses
the constant transport of entropy along the path line dx/dt =u. From
equation (2.1.17) in Volume 1, one has, for the variations of entropy s,

ds= 1% (dp _ ‘_‘g) (16.4.25)
P c
and the first equation is equivalent to the condition
d®s=0  along dx_ u (16.4.26)
dt
or
0s Os
—+u—=0 16.4.27
ot 0x ( )

Hence, the entropy propagates along the path line and is conserved along this
characteristic, as long as discontinuities do not appear.
For isentropic flows, the Riemann or characteristic variables can be integrated
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as follows, for either C, or C_. For instance, on C,,

wy=u+ J‘Q =u+ fc(p)d—p (16.4.28)
pc p

where the isentropic relations
. p=kp* and ct=kyp'! (16.4.29)

can be introduced, k being a constant. This gives

wy=u+ Llc (16.4.30)
‘y —
and similarly )
Wy=u———¢ (16.4.31)
y—1
for the two Riemann variables on the characteristics C, and C_. The system
of one-dimensional Euler equations is then equivalent to the following

characteristic form:

§+u(—9§—0
ot 0x

0 c 0 2 1ds
o) urog (v ty)--agh s

6( 2c> 6( 2 ) 1dS
—Nu———)+u—c)—|u——)=+cu-——
a\ y—1 ox y—1 Sdx

This formulation expresses the propagation or the convection of entropy along
the streamlines and the propagation of pressure waves as described by the
Riemann variables w, and w, along the characteristics C, and C_.

Other formulations in characteristic variables can be found in Liepmann and
Roshko (1957).

Example 16.4.2 Steady two-dimensional supersonic flow

We consider a stationary, two-dimensional supersonic isentropic flow written
in non-conservative form with the variables u, v, p as basic dependent variables.

By transforming the continuity equation, via the isentropic relation, into an
equation for the pressure, as done in Section 16.2.2, equation (16.2.40), the system
of stationary Euler equations becomes

u6u+va_u+16_p_
ox dy podx

LALLM L ) (E16.4.5)

£y
IR
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This can be written as a system for the variable

u
V=|v (E16.4.6)
p
under the form
vV 14
A16—+Aza—=0 (E16.4.7)
ox dy
Taking the x direction as time like, the system can be transformed to
| 4
6_ +A a—V = (E16.4.8)
ox dy

uy —c? .
p
1
A= 2_¢? E16.4.9
0 f’_(uz _c2) u ¢ uz_cz ( )
u pu
— puc? puc? uv

It is seen that (u? — c2) may not vanish for the matrix A to exist, that is the
flow should be supersonic in the x direction. This is the condition for the
selection of x as a time-like direction, as seen in Chapter 13, Section 13.3.
The properties of the stationary system are defined by the eigenvalue structure,
solutions of det|4A — AI|=0.
A straightforward calculation gives the three eigenvalues

v
}'l=_
u

2
=t _uto (E16.4.10)
u-—c u—v

w—cla va—u —
by=——7=
u“—c ua + v
where
2,.,2 2
a=yMI=1 and M2=2ET-T  (gean)
c c

They are real and the system is hyperbolic in x if « > 0, that is for supersonic
flows. Otherwise there is one real and two complex eigenvalues and the system
is hybrid.
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The first eigenvalue defines the characteristic C,, identical to the streamline,
while the two other eigenvalues define the characteristics C, and C_ and are
the Mach lines (see also Chapter 13 and Problem 13.4).

The diagonalization matrix L™ !, such that L™ 1AL = A, where A is the diagonal
matrix of the eigenvalues, is obtained from the left eigenvectors of the matrix
A. Applying the method of Example 16.4.1, with the third component I,
normalized to 1, one obtains

pu pv 1
_pop
L= o o (E16.4.12)
poo
o o

The inverse matrix, containing the right eigenvectors as columns, is

u _u + v vo—u
P 204*  2pq*
L= é “;pqz" - "2:;‘: (E16.4.13)
0 1 1
2 2

The characteristic variables are defined by W = L™V, or
ow, = pudu + pvdv + op

2
5w2=5p—% (2)=5p—?6u+%6v (E16.4.14)

2
ow, =6p+ﬂ5(2>=5p+ﬂ5u—ﬂév
a \u o o

The compatibility relations can be written as follows by defining the directional
derivatives d® along the characteristic k:

(1) (1) 1)y —
pud®u + pvd v +dVp=0 (E164.15)

%d‘z’u - %dmv —d@p=0

PY gy _PY g, 4 g®p =0
x «
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These relations can also be written in characteristic form for the variables W:

ow;  vow,

at  udx

Ow; (vt ciadw; (E16.4.16)
o ot u?-—c? ox

ow;  uv—cladw,
- t—=—55-=0
ot  u*—c* Ox
where w, is constant along the streamline, the quantity w, is constant along
the Mach line C, and w; is constant along C_.

16.4.3 Characteristics in the x¢ plane—shocks and contact discontinuities

One can interpret the physical state at a given point in a one-dimensional
isentropic inviscid flow as resulting from the quantities transported along the
characteristics.

At a given point P(x,t) (Figure 16.4.3), the physical flow condition will be
determined by the entropy transported along C, at speed u, that is along the
streamline. The velocity 4 and the pressure or the density are determined from
the quantities [u + 2¢/(y — 1)] transported at velocity (u + ¢) along C... Hence,

(Hi) =<u+_?f.> (16.4.33a)
‘y_l P ) y_l P,
(u— 2 ) =<u—i) (16.4.33b)
y—1/p y—1/p_ -
SP = sPo (16.4330)

subsonic flow

supersonic flow

&& Physical region of
—dcpendence
x,0

P P P
+ o -

Figure 16.4.3 Propagation of flow quantities in a one-dimensional inviscid flow
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Figure 16.4.4 Intersecting characteristics for d{u +c) <0

The left side of Figure 16.4.3 is drawn for the case of a supersonic flow, while
for a subsonic flow, the C_ characteristic has a negative slope and one has the
situation shown on the right side of the figure.

Each point P in the (x,t) plane is reached by one characteristic of each type
and therefore the flow situation at a given position x, at the time ¢, is solely
dependent on the domain between P, and P _. This is the domain of dependence
of P. Inversely, referring to Figure 16.4.2, the region included between the
characteristics issuing from P forms the domain of influence of P.

Due to the non-linearity of the flow equations, the streamline slopes may
decrease, in particular if d,(u+c) <0, that is when (u+ ¢) decreases with
increasing x, and one can have the situation illustrated in Figure 16.4.4, where
the C, characteristic emanating from P, , intersects the C, characteristic from
P, and hence multi-valued quantities would occur in P, ; that is one would have

<u+_20_) =<u+i> (16.4.34a)
y_l Py ?_l P.
and
(Hi) =<u+_20_) | (16.4.34b)
y—1/p, y—1/p,.,
where
<u+_2f_> ¢<u+_£c_> (16.4.34c)
'Y_l P+ ‘y_l P+

This impossible situation leads to a discontinuous flow behaviour called a shock
wave.
It is shown (see, for instance, Shapiro, 1953 and Whitham, 1974 for a more
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detailed discussion of shock properties) that the shock velocity C satisfies

(+clp,, <C<(u+ck, (16.4.35)
This implies also that all the variables satisfy the relation
(o, u,P)p, > (p, U, Plp, ., (16.4.36)
and also
(@, > (e, (16.4.37)

in order for a shock to occur.

The fact that (9,p) should be negative implies that a fixed observer sees a
wave of increasing pressure, that is a compression wave, in order to generate a
shock. On the other hand, an expansion wave will not give rise to discontinuities
in physical situations, but will lead to an expansion fan.

Hence, with respect to a fixed observer, a shock situation will be characterized
by the following properties shown in Figure 16.4.5(a), while for a stationary
shock, one has the situation of Figure 16.4.5(b), with the conditions that the
velocity towards the shock is supersonic and subonic when going away from
the shock.

Another discontinuity that can arise is the contact discontinuity representing
an interface between two fluid regions of different densities but equal pressure.
However, since the contact interface moves with the fluid particles, the velocity
has to be continuous over a contact discontinuity.

These various aspects of one-dimensional inviscid flows will be illustrated by
the solution of the so-called shock-tube problem described in Section 16.6. This
problem forms a non-trivial solution of unsteady Euler flows.

» (u+c) (u-¢0
c P+ Py
e . —eeep 4
_— (—)——-—> —_— —
+ u
u+c) P, u+c Pl+ u P, P1+
(u+c), >C>(u+¢) (uH:)P >0 (u—c)P <0
P, P + 1+
(a) Moving shock (b) Stationary shock

Figure 164.5 Shock condition for fixed observer and for an observer moving with the shock
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At hypothetical
expansion shock

Figure 16.4.6 Situation with an hypothetical expansion shock

Note that the condition for the occurrence of a compression shock can be
expressed by the fact that the characteristics on both sides intersect the shock.
This means that the information carried by the characteristics is propagated
towards the discontinuity. A hypothetical expansion shock would lead to a
situation where (4 + c)p, < C <(u+c)p,, instead of equation (16.4.35) and to
characteristics carrying information away from the discontinuity. This is
illustrated in Figure 16.4.6. The conceptualization of these conditions to the
definition of an entropy condition, which would exclude the above expansion
shock, is discussed in Chapter 21.

16.4.4 Physical boundary conditions

The above considerations have a direct bearing on the number of boundary
conditions to be imposed in a one-dimensional inviscid flow problem. Consider
an inlet plane x = x,, an outlet plane x = x, and points P, and P, at a given
time on these boundaries. The number of boundary conditions to be imposed
will depend on the way the information transported along the characteristics
1nteracts with the boundaries (Figure 16.4.7). speeds UHC and W

Ay{ an inlet point P, the characteristics C, and C, have slepes uand c+u,
which are always positive, for a flow in the positive x direction. Therefore, they
will always carry information from the boundaries towards the inside of the
domain. This requires the values of the transported quantities to be known at
P,.

The third characteristic C_ has a slope whose sign depends on the inlet Mach
number. For supersonic inlet flow conditions, C_ will have a positive slope,
but a negative slope at subsonic inlet conditions.

In the first case, the information from the inlet surface enters the domain and
a corresponding boundary condition has to be imposed. On the other hand, at
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supersonic outlet

DN

subsonic inlet

AMMIM1{I{YY

X=X ° X=X,

Figure 16.4.7 Boundary conditions for one-dimensional inviscid flows

subsonic inlet conditions, information from inside the domain reaches the
boundary along C_ and no boundary condition associated with C_ is allowed
to be fixed arbitrarily.

Similar considerations can be made at the outlet. Two characteristics, C, and
C., always reach the outlet from inside the domain and therefore they determine
two of the three independent characteristic variables in the outlet plane from
the behaviour of the interior flow.

The third condition is dependent on the outlet flow Mach number. For
supersonic outlet velocities no boundary condition is to be imposed, while at
subsonic outlet velocities one boundary condition is to be fixed at the outlet
section.

This is summarized in Table 16.1. Table 16.1 shows the number and the
nature of the boundary conditions required by the physical properties of the
flow. However, this raises several problems with regard to the numerical
formulations.
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Table 16.1. Physical boundary conditions for one-dimensional
inviscid flows

Subsonic Supersonic
Inlet Two conditions Three conditions
w,; and w, given Wy, Wy, Wy given
Outlet One condition Zero conditions
w; given

(1) The physical conditions to be imposed are the entropy and the values of
the characteristic or Riemann variables. This is not a very practical
requirement, since these variables are generally not known. Instead, the
conditions that are fixed in practical situations in experimental set-ups are
velocities and pressures, and therefore the characteristic information might
have to be defined in an iterative or approximate way, particularly at
subsonic boundaries.

(2) On the other hand, the numerical schemes generally require the values of
all the variables at the boundaries. Hence, additional conditions of numerical
origin will have to be added to the physical conditions in order to define
completely the numerical problem. These conditions, called the numerical
boundary conditions, correspond to the boundary variables defined by the
inner flow. They should reflect in some way this information, which is
dependent on the yet:unknown internal flow conditions. Therefore, these
numerical conditions should be compatible with the physical flow behaviour
and should not influence the physical boundary conditions.

The importance of the numerical boundary conditions is considerable and
can not be emphasized enough. In addition, it can be shown from the theoretical
point of view, as well as through numerical experiments, that the choice of the
numerical boundary conditions can have a dominating effect on the accuracy,
stability and convergence rate of many schemes. For instance, many implicit
schemes which are linearly, unconditionally stable, appear to be only
conditionally stable in practice if an unadapted boundary treatment is
introduced.

A large number of methods have been and still are being investigated in order
to find the most appropriate boundary formulation for a given discretization
scheme, and this will be discussed in more detail in Chapter 19.

16.4.5 Characteristics and simple wave solutions

The characteristic attached to an eigenvalue 4, ; is a curve in the space-time
domain (x, t), defined by equation (16.4.20), which expresses that its direction
is equal to A ;. Under certain circumstances, such as one-dimensional isentropic
flows, the characteristic variables are constant along the associated
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characteristics in the (x,t) space. However, as mentioned at the end of
Section 16.3, the W variables cannot always be integrated.

Following Lax (1957), more general solutions to systems of hyperbolic
equations can be defined by considering characteristics or simple wave solutions
in phase space, that is in the space of the variables U.

We consider a scalar variable v, constant along the characteristic (j), that
satisfies

W 0% (16.4.38)

ot O0x

and we look for solutions defined by U = UY(v), everywhere tangent to the
right eigenvector r'(v) associated to the eigenvalue 4;)(v). This solution defines
a wave path in phase space, as illustrated in Figure 16.4.8, and is such that

h)
av? _ .o (16.4.39)
dv
Hence UY satisfies the conservation equation dU/dt + A8U/dx = 0, because of
A‘ )‘0)

@
A

< characteristic (j)

Space - time domain

X ~
>
A " 2 . - ~
0 )
r | Phase space U
P(v) k#j
P (v))
o9 o)
u 1
>

Figure 1648 Characteristics and simple wave solutions in
space-time and phase space domains
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equation (16.4.38), since
ouY duVop . ov

ot dv ot at

ouy dU o o ) 50V
ox  dvo ox ar ax
Along this wave path quantities can be defined that remain invariant.
The functional RY(v) is invariant along the wave path UV if
dRW
dv

(16.4.40)
A

=0 (16.4.41a)

or dRU) aR(l) dU(D aR(j)

dv aU dv U

This equation indicates that the gradient of R with respect to the U variables
is orthogonal to the corresponding j-right eigenvector. Since the (n— 1) left
eigenvectors 1™, k # j, are also orthogonal to r', there are (n — 1) independent
RY invariants whose U gradients can be expressed as linear combinations of
these (n — 1) left eigenvectors.

Note that 0R/0U is a line vector with the following elements in conservative
variables 0R/0U = (0R/dp, OR/0m, OR/D¢).

For each eigenvalue (j), one can write

W
dR =Y al® (16.4.42)
dU 5
with (n—1) arbitrary constants «,. Hence (n— 1) independent invariants
RY.m=1,...,n—1, can be defined for each j eigenvalue.
It is easily shown (see Lax, 1957) that the boundaries of a region of constant
state U in the xt space are characteristics that are necessarily straight lines.
The compatibility relation (16.4.15) can be written separately for each
eigenvalue, considered for the conservative variables:

l""(aU A""au) 0 (16.4.43)
ot Ox

For j # k, the kth left eigenvector can be expressed as a linear combination of
the (n — 1) invariants RY by inverting the relations (16.4.42):

) w0 IRy dRY

r¥=0 (16.4.41b)

[® = k+#j 16.4.44
...;1 B0 j ( )
Inserting this relation in equation (16.4.43), we obtain
Gy
Y ﬂf:’(ag +A® 6(1; ) 0 k#j (16.4.45)
m X

and if the j characteristic is the boundary of a constant-state region, each term
should vanish separately; hence, for all k # j,



176

o ")
R, 4 A _m OR,, =0 k#j (16.4.46)
ot 0x

indicating that the j invariants are constant along the (n — 1) other characteristics
in the x—t space.

Consequently, a solution in a region of the x—t space for which all j invariants
are constant is called a j simple wave. Simple wave solutions separate regions
of constant state.

Referring to Figure 16.4.8 for the purpose of a simple illustration, the
invariants RY are constant along the wave path r'” in phase space. However,
since this wave path is generated by varying the parameter v, that is by crossing
the associated characteristic in the physical space—time domain, it is also seen
from equation (16.4.46) that the j invariants are constant across the j
characteristic in the x—t space.

Multiplying equation (16.4.39), which defines the j invariants, by the kth left
eigenvector for k #j and introducing the characteristic variables defined by
equation (16.3.35) leads to the following relation:

dUD _dw,_
dv dv

Hence, the (n — 1) characteristic variables w,, for k # j, defined for the simple
wave solution, satisfy equation (16.4.41) and are therefore j invariants. They are
called Riemann invariants, following the definition given in Section 16.4.2. When
a j characteristic is followed in physical space—time, the variable w; remains
constant, but when the simple wave path defined by the jth right eigenvector
is followed in phase space, then the (n — 1) other characteristic variables wy, k # j,
are constant. Both points of view are actually consistent since in following the
wave path in phase space one crosses the j characteristics in x—t space and
thereby follows the various other k characteristics in the x—t"domain.

For the one-dimensional Euler equation, three characteristics exist. For the
wave of speed u—c, the quantity [u — 2¢/(y — 1)] is constant along the associated
characteristic in the x-t space, while the two /other variables s and
[u+ 2¢/(y — 1)] are constant when this simple wave is crossed. Similarly,
[u—2c/(y — 1)] and s are constant when the u + ¢ characteristic is crossed. For
the third wave of speed u, it is seen from equation (16.4.18) that w, and w; can
be combined for the simple wave solutions to u and p as invariants.

Finally we mention here a general property shown by Lax (1957); namely
when crossing a shock of intensity ¢, the j invariants all undergo a change of
third order in e.

) k#j (16.4.47)

16.5 EIGENVALUES AND COMPATIBILITY RELATIONS IN
MULTI-DIMENSIONAL FLOWS

The eigenvalues of the system of multi-dimensional Euler equations are
surprisingly simple, in view of the complexity of the Jacobian matrices. The
associated eigenvectors are easily derived for the Jacobians in primitive variables.
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16.5.1 Jacobian eigenvalues and eigenvectors in primitive variables

The eigenvalues are obtained as solutions of equation (16.3.5):

det|AT— 4 %|=0 (16.5.1)
or explicitly with 4 defined by equations (16.2.44) to (16.2.46):
(T-K—-4)  px, pK, pK, 0
0 CREY)) 0 0 K./p
det 0 0 (TK—2) 0 k,/p |=0 (165.2)
0 0 0 (v'x-14) K,/p
0 pc, pcix, pc’k, (TK—2)
The above eigenvalue equation becomes
@K —-APL(T K- =-c**]=0 (16.5.3)

leading to the following eigenvalues:
Ay=T'K+ck (16.5.4)

where x is the modulus of the vector %.

The first eigenvalue has a multiplicity corresponding to the space dimension,
that is three for a general three-dimensional flow or two in a two-dimensional
flow system. The other two eigenvalues are the obvious generalizations of the
one-dimensional case with a very similar physical interpretation. The
corresponding speeds of propagation of the waves are respectively

1=d,=d3=(v" T )Tx
To=[(T 1) +c]1, (16.5.5)
aS - [(U lx)_c] lx
The first three propagation velocities are the projection of v along the direction
of the wave vector ¥, while the two remaining velocities are identical to the
one-dimensional propagation velocities when viewed along the direction of k.
According to equation (16.3.19), the bicharacteristic directions are given by
(v,1), and (¥ t+ c- 1,‘, 1).
The left eigenvectors 19 can readily be found by solving the homogeneous

problem (16.3.6). For the triple eigenvalue 1=71"X, one obtains the following
equations for the components of "

=)

l, arbitrary

ll + Czls = 0
I+ ¢y =0 (16.5.6)
I+ ¢y =0

lez + Kyl3 + Kzl4 = 0

where «,, k,, k, are the Cartesian projections of ¥.
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This system, which occurs three times, has nevertheless three linearly
independent solutions, which are defined, up to two arbitrary normalization
factors, by

T = (W0, 0., = iy, — e
1(2) = (“(12)a - Kz#(ZZ)’ Os Kx#(22)9 - u(XZ)/cz) (16'5'7)
I = (U, + 1, 1§, — k1,0, — uP/c?)

For the two remaining eigenvalues, one obtains

Il =0
12 = i c'expls
ly= % ck,pl; (16.5.8)

l4 = i- C'ezpls
I, arbitrary
and '
T4 = (0, R, Ry, R, 1™, u®/pe)
I(S) = (O’ - ,exu(S)’ - 'ey#(S)a - 'ezu(S)’ #(5)/pc) Y

where R, R, R, are the Cartesian components of the unit vector _1.,‘ along
the direction of ¥.

The u coefficients are arbitrary normalization coefficients which can be freely
chosen.

Since the norm of ¥ is of no physical significance, it is customary to select
the coefficients p of the three first eigenvectors to be proportional to 1/x. For
instance, one can take

(16.5.9)

1
) =pP = = B
p =y =1 (16.5.10)
and
pl=r, pP=k, uP=r, (16.5.11)

This leads to a diagonalization matrix L~ Lof K= i &, formed by lines equal
to the left eigenvectors [ of the following form:

%

” A _'ex
Ky 0 kK, —&, e
—R
[6 -& 0 & 3
—R
L 1=|R, R, —K, 0 —;2“—: (16.5.12)
0 R, R R 1
pe
0 -k, —R —R, 1
pc
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The Everse of L™! is composed of columns equal to the right eigenvectors of

K =A% and is equal to (see Problem 16.10)

R, &, & £ £
2c 2
0 —% & Ry —Re
2 2
R, —R
L=| # 0 - =2 y 16.5.13
) ( )
—R, R, O £ K
2 2
0 0 pepe
2 2

Note that the two-dimensional matrices, for flows in the xy plane, are obtained
by removing the fourth column and the second line of L™! and setting x, =0
in the remaining elements. Similarly, the second column and fourth line have
to be removed for the two-dimensional form of L (see Problem 16.11). It is
interesting to observe that the determinant of L is equal to

1

det(L) = 5’25=m (16.5.14)

Many other choices can be made for the normalization coefficients u. For
instance, a curent choice is ¥ = 3 = l/ﬁ (Warming et al., 1975); see also
Problem 16.12.

As noted earlier, the matrix L diagonalizes the linear combination
(Ax + BK + sz) but does not diagonalize the individual matrices A, B,C. Of
course, the matrix L, corresponding to £, = 1, 8, = R, = 0 will diagonalize the
Jacobian Z, but not B and C. Since these three J acobians do not commute they
cannot be diagonalized simultaneously. For instance, if L is written as a function
of k,, K, R, as L(R,,K,,K,) then the matrix L, is equal to L(1,0,0), while the
matrix L, = L(0,1,0) will diagonalize B and the matrix L, =1(0,0,1) will
diagonalize C.

Explicitly, we have

-1
1 0 00 —
e
0 0 01 0
0 0 -1 0 0
L['= 1 (16.5.15a)
0 1 00 —
pc
1
0 -1 00 —
pc
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10 ot 2

2c 2

0 0 0 1 .__1

L 2 2
=lo 0 -1 0 o (16.5.15b)

01 0 0

R

2 2

and the eigenvalues of A are obained from A(®) for the values k, = 1,x, =k, =0
if ¥ is normalized to a unit length. Hence,

u -
. Cou - . .
L{'AL,=|- - wu . . (16.5.16)
- . . u + c .
. u—c
and similarly
0 -
. Cop - . .
L;'BL,=|- - v . . - (16.5.17)
. . . v + c .
. v—c¢
w -
_ Cow . .
L;'CLy=|- - w . . (16.5.18)
. . . w + c .

w—c
Note that L' contains the left eigenvectors of A and similarly L; ! and L;*
contain the left eigenvectors of B and C respectively. /

16.5.2 Diagonalization of the conservative Jacobians

The conservative Jacobians will be diagonalized by applying the transformation
matrix M:

A=L"'(A-®)L=L'M"(4 %ML (16.5.19)
and the matrix P = ML will diagonalize the conservative Jacobians in the form
P Y A-K)P=A (16.5.20)
where A is the diagonal matrix of the eigenvalues 4,
TE .
TR . .
A=] - - UK . . (16.5.21)
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From a direct multiplication of M and L, which is left as an exercise to the
reader (Problem 16.13), one obtains the following form for P, with the variables

- 72\ = —
b =<~2—)' l,¢+p(—i)‘ X lx)
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v c? 72 (16.5.22)
— =h+—

2 y-—1 2
R, R R, £ L

2c 2c

uK, uk, — pR, uk,+ pK, i(u + K.0) %(u —R,0)

. p p
P= vk, + pR, vk vR,—pk, —W+K,C —(v—R,c
P / y p 2c( ¥C) 2c( ¥€)

WwR,—pR, WR,+pR,  WR, zﬁc(w+ ) ipz(w—k,c)
51, 51, BT, S+ T) SH-TT)
(16.5.23)

For other choices of the normalization coefficients u¥ and u', the fourth
column has to be divided by u® and the fifth by u®. As with the corresponding
matrix L, the two-dimensional version of P is obtained by removing the second
column and fourth line and by setting £, = w =0 in the remaining terms.
Similarly, from L™ ! and M ~! one obtains for P~ !, with the auxiliary variables

~ (. y=1.\- 1 _ =
Bo=<1 —”——M2>1,-—(v xT,) (16.5.24)
2 p
. T, y—1_
C,=+—2-"""% (16.5.25)
ppc
- - R R, -1
B, T. G—D2k,  G=DoR A+ -DaR-2 —Tg,
2 2 P e p p?
- u R, v w Ry -1
BT, e B R e
o R R, -1
Pi= B, T, G-DaR A2 G-Dok—=  g-Doe -k
A ¢ P c P ¢ P
- 71 - - = - = -1
f(uw—" ) c. T, €., c, T, =
P\ 2 c pec
-1 7-T,) S T I —1
E(?-——M2+v ) c.1, c., c_T, =
P\ 2 ¢ pc

(16.5.26)
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The two-dimensional form for P~! is obtained by removing the fourth column
and second line. Note also that the columns of P are the rlght eigenvectors of
the marix K = 4 ‘%. Similarly, the left eigenvectors of A % are obtained from
the lines of P~ = L M1

The matrix P, = ML, will diagonalize the Jacobian 4 and can be constructed
from M and L,. One obtains by direct multiplication or by taking &, =1,
R, =R, =0 in the general expression (16.5.23) of P:

1 0 0 L L
2c 2c
w0 0 plu+c) plu—c)
2c 2c
pv pv
P=|lv O p % 2y (16.5.27)
2c 2c
v? P p [
— - —(H+uc) —(H—-uc
5 o 2c( ) 2c( )
and one has
u
N u
P YVAP,=|- - u (16.5.28)

u+c
: u—c

Similar properties are obtained for the other two components B and C.

s

Example 16.5.1 Two-dimensional matrices of eigenvectors

For a two-dimensional flow, one obtains, with the orthogonality condition
L™ 'L =1, the following forms:

-1

1 0o 0

CZ

0 & —R 0
L= E16.5.1
0o & 5 L E165D

pc

0 —R, —R&, 1

pc




and

1 0 £ _ﬂ
2¢c 2¢
,e —_

0 r, = L
S T

0 —¢, & =K
2002
0 pc pc
2 2
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(E16.5.2)

The associated P matrices are obtained from equations (16.5.23) by removing
the second column and fourth line, with x,=w=0 in the remaining

terms:

v

- ka

v? P =, P -
— puk,—vR,) —(H+cv'1,) —(H—cv-1,
- plu,—vk) P ) LH-c7 T

P

b P
2c 2c

p R p

—u+ x ¥ 'ex
ZC(u (cx) 2c(u ¢ ‘)

p P
Z(v + cR,) 2_c(v - c:s‘:},.)

(E16.5.3)

and the two-dimensional form for P~! is obtained by removing the fourth
column and second line from the three-dimensional form, with k,=w =0,

u v
(7—1)? (7'—1)6—2
Ry — R
p p

L e-o-02] 2e-0-17]
p cl »p c

—1[k,+(v—1)5] —1[»e,+(v—1)9]
p c p c

An alternative expression for the L™ matrix

y—1

pc
(E16.5.4)

Other choices for the left eigenvector normalization coefficients lead to different
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combinations for the compatibility relations. For instance, the choice

“(11) =ll(4) =ll(5) =1
psh) = D =y =0 (16.5.29)

1

) — ,,3)
# = u = —
2 2 K

leads to the following form:

-1
1 0 0 0 —
cz
—%, 0 R, 0
- R, —R 0 0
It= Br T , (16.5.30)
0 R R, R, — |
pc
1
0 —R, —R, —R, —
oc |
with the following matrix of the right eigenvectors:
10 0 LA
2c 2
0 -&, R, s ks
2 2
_ —RR, —(RZ+RY R, AR
=|0 y= 2 X2 ¥ 16.5.31
L R, R, 2 2 ( )
o .
0 Rl RR R R,
R, R, 2 2
0 o0 0 pe pe
2 2

The other matrices P! and P can be derived by direct calculations (see Problem
16.13).

16.5.3 Mach cone and compatibility relations

The characteristic surfaces in a three-dimensional flow are easily obtained from
the knowledge of the eigenvalues of the Jacobian matrices. For the multiple
eigenvalue 1=7"%, all characteristic surfaces contain not only the vector
(' 1,)1,,1) in the space-time domain but also the vector (7, 1), as shown in
Section 16.3.1. The characteristic surfaces are therefore the stream surfaces and
this vector is called the pseudo-path line. This projection on the space-like
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At

P(x,y,t)

(a) Supersonic flows

#

(b) The xy projection of bicharacteristics

Figure 16.5.1 Characteristic surface and Mach conoid for a supersonic flow
configuration

domain t=constant is the velocity vector. Hence, the envelope of all he
corresponding characteristic surfaces are the pseudo-path line (7, 1), since this
vector is independent of the normal ¥ and the Mach conoid attached to this
multiple eigenvalue reduces to the pseudo-path line.

The two remaining eigenvalues generate the same Mach conoid, whose
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intersection with a t=constant surface is the sphere, or tl_'n.e circle in a
two-dimensional flow, obtained by the rotation of the vector (c 1,) around the
extremity of the vector 7. Indeed, since the characteristic surface contains the
bicharacteristics, defined by equations (16.3.18) and (16.3.19), b=(v t ¢ l,(, 1)
and the vector (@,1)=((T- 1, £¢)1,, 1), the projection of the envelope of the
wave phase surfaces may be obtamed by varying 1 on all the space components
of the bicharacteristics b. For a two-dimensional flow Figures 16.5.1 and 16.5.2
represent the two possible situations for supersomc and .subsonic flows
respectively.

It is seen that the axis of the Mach conoid is the pseudo-path line (7, 1) and
that the point P lies within the circle of radius ¢ around v in the ¢ = constant

projection for a subsonic flow, while it lies outside this circle for supersonic flows.
\

The compatibility relations in multi-dimensional flow

The compatibility equations can be obtained by multi[zrlying the system of
non-conservative equations in primitive variables by each of the left eigenvectors
following equation (16.3.20).

A practical way to proceed is to calculate first a vector Z ) defined as three-line
vectors by

Zu=i ZV=(2,2,Z)" (16.5.32a)
ZV=(Z41,242 243214 Z,5)” (16.5.32b)

such that equation (16.3.20) becomes ? /
,m%;’ +ZOVY =1 (16.5.33)

If one defines the following directional derivatives as a 1 x 5 line vector of
operators

d9 = (1, + Z9-V) (16.5.34)
the compatibility equation (16.3.20) can be written as
d9v =([1¥Q) for a given eigenvalue AG) (16.5.35a)

Denoting by a subscript k the kth component of d¥ associated with a vector
Z Y, it can be observed that the kth directional derivative acts only on the
correspondmg component of V; that is the derivative in the direction of Z,
will act on the density p, the derivative d, associated with Z, will act on the
velocity component u, and so on. Hence, this equation reads

dPp +dPu+dPv + dPw + dPp =T9-0 (16.5.35b)
for a given eigenvalue 4.

Since the eigenvalues are a function of the normal ¥, one can define an infinity
of sets of vectors Z Y associated to the same eigenvalue by orienting the
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characleristic surface

y
(a) Subsonic flows

Ty

boundary -

(b) The xy projection

Figure 16.5.2 Characteristic surface and Mach conoid for
a subsonic flow configuration



188

wave-number vector ¥ in various directions. Note that the magnitude of x plays
no physical role since it can always be set to one by an appropriate
normalization.

Since the set of Euler equations can be replaced by an equivalent set of
compatibility equations for each of the eigenvalues (five in a three-dimensional
flow), it is seen that there is an infinite manifold of equivalent formulations of
the form d,v, = IQ, which can replace the original form of the Euler €quations.

It must be ensured, of course, that the selected characteristic compatibility
equations form an independent set. One guideline is to define one compatibility
equation for each eigenvalue number (j). Since the five space-time vectors

(TY, Z9) all lie in the four-dimensional characteristic surface S(X, t) = constant
(see Chapter 3 in Volume 1), they are not independent from each other. Hence,
one can always recombine the compatibility equation ¥ d,v, =10 into
derivatives along four independent directions. For instance, one can always
select the bicharacteristic direction in order to define a directional derivative
and three orthogonal directions within the characteristic surface. Another
alternative is to select different values of ¥ and then combine the equations. In
particular, selecting ¥ along the coordinate directions will allow the connection
with one-dimensional propagation properties to be expressed; see, for instance,
Zannetti and Colasurdo (1981) for an application of these properties.

Example 16.5.2 Determination of Z direction /

Consider the form (16.5.12) for the matrix of the left eigenvectors. The
components of Z "Zz,,Z,Z.)" are obtained from the products IM4, VB [OC,
With

—R
=R, 0,R,, — Ry —5= (E16.5.5)
c
one obtains, by direct multiplication of A from the left by I,
) — Uk,
Z)=|uk,,0,ux,, —we,,—z (E16.5.6)
c

The y-component of Z Wis obtained by a similar operation on the jacobian B:

2
20 = ok, 0,02, — ok, - [“-'eLf"-] (E16.5.7)
pc
and with Z{ = I0¢,
2
ZW = [wR,, 0, wR,, — wR,, — [w] (E16.5.8)
pc

Similar forms are derived for the second and third eigenvectors, by permutation
of the x, y,z components of ¥.
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The fourth eigenvector

1
1 _ {0, fu iR, _l (E16.5.9)
pc
generates the following components of Z ) = [ 1 :

Z =0, uk, + ¢, uk,, up,, <2 Y (E16.5.10)

pc
ZW =|0,vk,, R, + ¢, vk, Ryeto (E16.5.11)

pc
29 = [0,k wh,, wk, + ¢, 5T Y (E165.12)

pc

These components now allow a straightforward determination of the
compatibility relations.

For any of the three first eigenvectors, for instance IV, the following
compatibility relation is obtained, applying directly equation (16.5.33) in the
absence of source terms:

~ 1 - - 1,
;e,[(a, +7-V)p -C—z(a, +F-V)p] + ;e,[(a, +7Vpw+ ;a,p]
- ;e,[(a, +7 -V + la,p] =0 (16.5.36)
p

The last two terms are the projections of the momentum equation along the y
and z directions and the compatibility equation reduces to

1 —
dvp—_zdvI):O dv=6'+7)“v (16.5.37)
c

where the derivative d, indicates the convective derivative along the pseudo-path
line. As shown for the one-dimensional case, this is equivalent to the conservation
of entropy along the path line for continuous {low variations.

The eigenvectors [ and T'® corresponding to the eigenvalues (7% + cx) lead
to the following compatibility equations:

R0+ T VIu+ R0, + TV + R0, + T-V)w + V-7
+ 100,47 £ cT)VIp=0 (16.5.38)
pc

The pressure term represents a contribution from the derivatives along the
bicharacteristic (v + ¢- 1,) and will be written as dX:

df =0,4+ ([T +c1 )V (16.5.39)
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The first terms can also be transformed into variations along the bicharacteristic,
leading to the following expression:

_ 1 — —_ e =
1,div +—dip+c[V-v ~1,(1,-V)7]1=0 (16.5.40)
pc

This compatibility equation has a close resemblance to the one-dimensional
form, at least for the first two terms. These two terms correspond exactly to
the one-dimensional Riemann variables, but written for the velocity component
in the direction of ¥. Hence, for isentropic flows, one can define one-dimensional
Riemann variables associated with an arbitrary direction «, but, these will not
be invariants because of the two last terms, with the exception of

one-dimensional flows. Defining o~
R =71+ % (16.5.41)
y—1
the above compatibility equation can be written as
dERE = +c[1(T, V)T -V-o]1+7d3 T, (16.5.42)

The last term on the right-hand side vanishes when thé selected propagation
direction % is constant along the bicharacteristic. The term between brackets
on the right-hand side represents the components of the divergence of ¥ in the
subspace normal to 1,. Denoting this subspace by #, we have, referring to
Figure 16.5.3,

Vo=1,1, V7 +0,@ V7T (16.5.43)
In a two-dimensional space, 7, represents the unit vector T, in the direction
normal to 1,, while in a three-dimensional space, 7, represents the unit vectors

o
ES

1 X

»
Surface normal 10 1,

Three -dimensional space
Two-dimensional space

Figure 16.5.3 Subspaces normal to the x direction



191

—

1,and T, normal to 1,. Hence
A (@ VT =1,(1,V)7 in a two-dimensional space (16.5.44)

with 1,1, =0 and

Ae@ VT =11, V)7 + 1,1, V)7 in a three-dimensional space
(16.5.45)
with T,, T,,,, Tx forming an orthogonal set. Equation (16.5.45) represents the
contribution of the divergence originating from the surface normal to ¥, that
is from the characteristic surface.

The compatibility condition (16.5.42) can then be written, in the absence of
source terms and for constant «, as follows: '

dERE = F it (7, V)T (16.5.46)
This has been used by different authors (Moretti, 1979, 1983; Zanetti and
Colasurdo, 1981; Pandolfi, 1983, 1984) to develop numerical schemes with the
aim of following the physical propagation phenomena as closely as possible.
The compatibility equation is applied in various directions, for instance the
coordinate directions, and combined in order to obtain a set of equations for
the time derivatives 7, and p, (p, being connected to p, by the other compatibility
conditions).

Another important and widespread application of the compatibility relations
is their use as additional, ‘numerical’ conditions at the boundaries of the
computational domain in order to provide the necessary information for the
variables that are not imposed by the physical boundary conditions. In this
case the direction ¥ is mostly chosen along the noral to the boundaries. However,
it can also be used, in a modified form, in order to express the physical boundary
conditions such as to avoid parasitic wave reflections at the boundaries. This
is known as ‘non-reflecting boundary conditions’ and will be discussed in
Chapter 19.

Relations (16.5.40) or (16.5.42) are often used in the far field in external
aerodynamics or at inlet and outlet surfaces with internal flows in a local
one-dimensional form by setting the right-hand side to zero. Some caution is
in order here, since this will be valid only if the velocity is uniform in the
boundary surfaces.

16.5.4 Boundary conditions

The number of boundary conditions to be imposed at a given boundary is
connected to the amount of information, that is the number of bicharacteristics,
entering or leaving the domain.

Considering the Mach conoid on the boundary surface, say the surface
x =constant, one can decompose the bicharacteristic propagation into the
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direction parallel to the boundary and a component normal to the boundary.
The former will describe information that remains within this boundary surface
and neither enters nor leaves the domain. The latter, on the other hand, will
represent information that effectively enters or leaves the domain. Hence, the
number of conditions to be imposed at a boundary will correspond to the number
of bicharacteristics associated with ¥ =T, the normal to the boundary surfaces,
that enter the computational domain. ‘

For a supersonic flow entering the domain, there will be four (or five) for
two- (or three-) dimensional flow conditions, all of which have to be imposed.
If the inlet is subsonic, certain bicharacteristics will leave the domain, those
associated with (v-# —¢) <0, and only three (or four) conditions have to be
imposed. Similarly, at the outlet no conditions are to be given if the velocity
is supersonic and one condition is to be imposed for a subsonic outlet
speed.

The remaining variables will have to be determined by appropriate numerical
procedures, which have to be compatible with the physical flow conditions and
the numerical scheme. As discussed in the previous section for one-dimensional
configurations, this is an important and difficult problem to which careful
attention has to be given in the development of a computational method.

This is best illustrated by Figures 16.5.1 and 16.5.2, considering the dashed
line through P as an inlet or an outlet boundary of the-computational domain.
In the supersonic flow case (Figure 16.5.1), the projection of all bicharacteristics
will be on one side of the boundary. On the other hand, the same boundary
for a subsonic inlet velocity will always have bicharacteristics on both sides of
the projected boundary (Figure 16.5.2).

Examle 16.5.3 Two-dimensional compatibility relations

We apply the same procedure as described above to the two-dimensional case,
with the matrix of the left eigenvectors defined by equation (E16.5.1)

a. First compatibility relation With

= 1,0,0,121 (E16.5.13)
(4
one obtains
Z0 = 4,0,0, ="
C o
N (E16.5.14)
y sV VYV cz

and the compatibility equation for the first eigenvalue is identical to the
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three-dimensional form (16.5.37):

dp-~dp=0 d,=0,+77 (E165.15)
4

b. Second compatibility relation With the second left eigenvector equal to

1 =0, k,, — k0| (E16.5.16)
one has
ZP =|0,uk,, — urex,&
— E16.5.17)
Z‘yz’ =100k, — vR,, R (

and the compatibility relation becomes

B, (uR, — vR) + (T-V)(uk, — vR,) + 1(;eya,, —~R,0,)p=0 (E16.5.18)
p

¢. Third and fourth compatibility relations They can both be treated
simultaneously, since they correspond to opposite propagation directions, as
seen from the structure of the eigenvectors. Hence, with

1
1¥=0,%,, Ry, — (E16.5.19)
pc
one has, in full similarity with the three-dimensional case,
29 =|0,ur, +c, ur,, Kctu
pc
Z®=10,vR, vk, +c fete (E16.3.20)
y s Vil gy Uity ’ pc

and the compatibility relations become

R0+ T V)u+R,0,+7 Vv + V5 + i[a, +(T+cl,)VIlp=0 (E16.5.21)
pc

Characteristic variables

In treating boundary conditions through the compatibility relations it is most
appropriate to work with characteristic variables defined in the same way as
in the one-dimensional case. They are defined by multiplication of the primitive
variable vector V by the left eigenvectors; that is the jth component of W is
obtained by

ow; =19V (16.5.47)
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In the three-dimensional case, it is simpler to operate with the alternate form
(16.5.30) for the matrix of the left eigenvectors. Hence one obtains

-1
ow; =6p ~—dp
¢

dw, = Ryow — R,0u = (T, x 1,)-00 = — (T, x 6591,

&

ows = R,0u— R0 =(1, x 1,)-67 =(T, x 67) 1, (16.5.48)

ow, =Tx'57;°+—1—5p
pc

dwg = —Tx-57f+—l—5p
pc

The first characteristic variables describe entropy perturbations, as analysed
in the one-dimensional case. The second and the third characteristic variables
correspond to shear layer or vorticity waves in the characteristic surface normal
to the direction of propagation ¥. The last two variabl lgg-are associated with
acoustic pressure waves. Note the change of sign of w, and ws with respect to
their one-dimensional counterpart.

As noticed in Secction 16.3.3, the characteristic variables W cannot be
integrated in the general case, although the variations W can always be defined.
However, the variables W can always be defined locally if a linearization around
a constant state is performed, such that equation (16.3.38) is valid locally. In
all cases the characteristic equations can always be considered as a convenient
representation of the compatibility relations for the variations 6W.

The characteristic equations can be obtained by writing the space gradient
terms of equation (16.3.37) as Z -LVW, leading to the system

0 _ =
('a—t+v'V)W1=0

'V’)w2 - g(Ty x 1) Vi(w, +wg) =0

Q)IQ,

Q)lQ,

v"v‘>w3+ (T, x 1) V(w, +wg)=0 (16.5.49)
[ +(TJ’+ch)-V:|w4+cﬁx-(ﬁx-V)F=0

[% +(T —cl,)Viws+cn (7, V)T =0

Observe that the first term of each equation is purely convective and that the
characteristic equations would be totally decoupled, as in the one-dimensional
case, if the other terms would vanish. This is, however, not the case, unless
directions ¥ could be chosen to make the other, non-diagonal, terms vanish.
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These properties have been used by Deconinck et al. (1986) and Hirsch et al.
(1987) in order to define multi-dimensional upwind algorithms independently
of the mesh orientation.

The non-diagonal terms in the second and third equations are equal to the y
and z projections of the term

g(T,c x V)(wy + ws) = (T, x Y;) (16.5.50)

and depend only on the pressure gradient. The non-diagonal terms in the fourth
and fifth equations, on the other hand, do not contain the pressure term, since
this term is identical to the right-hand side of the compatibility relation (16.5.46).

This system of equations is fully equivalent to the Euler equations in primitive
variables. It indicates that the variations of w,, w,, w; along the pseudo-path
line is due to the variations of the pressure gradient in the direction normal to
the wave-number vector ¥. The variations of the characteristic variables Wy
and w, along the bicharacteristic, which represents the transport of pressure
waves, are due, for their part, to the variations of the velocity field in the
wave-front surface perpendicular to %.

These relations can be used to solve the Euler equations or can be applied
to generate numerical boundary conditions.

Two-dimensional characteristic relations

In the two-dimensional case, the characteristic variables reduce to

ow, op — ~6—f
4
ow, K,0u — R,0v
oW = = - 16.5.51
6W3 Ix'é-l_; + ée ( )
pc
6W4 -— T,"&Tf + @
pc

The characteristic system becomes
0 —
—+7'V])w, =0
<6t ) '
J _ = c
(a +7 -V)wzy— 5(kx6y — R0, )(ws +wy)=0

) - - (16.5.52)
[—a—t +(U+c lx)-V]w3 —c(R 0, —R,0)w, =0

[;;zt +( - CTx)'V]wa — (R0, — K, 0w, =0

This is easily obtained from the relations of Example 16.5.3 (see Problem 16.15).
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16.6 SOME SIMPLE EXACT REFERENCE SOLUTIONS FOR
ONE-DIMENSIONAL INVISCID FLOWS

We will present in this section some exact solutions, which can be used as test
cases for the validation of one-dimensional schemes.

16.6.1 The linear wave equation

This equation represents a wave propagating at a velocity a in the positive x
direction or the convective transport of a scalar quantity u in a flow of velocity
equal to a. This equation has been used extensively in chme 1 and we mention
it here again for completeness:

ou ou

Zra—=0 16.6.1

or aa_x ( )
Its general solution is

u=f(x—at) (16.6.2)

and allows a variety of test cases, from smooth solutions, like a sinusoidal wave,
to discontinuities. For instance, an initial distribution

u(x,0) = sin kx t=0 (16.6.3)
will lead to the solution
u(x,t) =sin k(x — at) t>0 (16.6.4)

This test case allows us to test the diffusion and dispersion properties of
schemes and to define the accuracy of the scheme on smooth functions as a
function of the wave-number k. On the other hand, the following discontinuous
variation

u(x,0)=1 x<0

with b< 1 (16.6.5)
u(x,0)=+b> x>0

leads to a discontinuity of amplitude (1 — b), moving with the velocity a in the
positive x direction.

This extremely simple test case is by far not trivial, as shown in Volume 1,
indicating that its numerical treatment can be very instructive with regard to
the properties of the scheme at handling propagating discontinuities.

When b > 1, the discontinuity is typical of an expansion shock and the scheme
should not propagate this discontinuity (although it is an exact solution of the
wave equation (16.6.1)) but instead damp this expansion through an introduced
entropy condition or any form of dissipative mechanism. ‘

16.6.2 The inviscid Burgers equation

This equation has a non-linear flux term, proportional to the square of the
basic variable u, identical to the convection term of the Euler equations. It is
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therefore representative for the non-linearities occurring in the flow equations.
It is written in standard form as

ou 0 u?
i1 = 16.6.6
ot 0x 2 ( )
or in quasi-linear form as
ou  ou
Y= 16.6.7
ot ox ( )
The Jacobian is equal to u and the characteristics are defined by
dx
=y 16.6.8
” ( )
The general solution is given by
du=0 along i—’: =u (16.6.9)

expressing that u remains constant on the characteristic (16.6.8).
For an initial distribution

u(x,0) = g(x) —w<x<w, t=0 (16.6.10)

the characteristics in the xt plane are straight lines given by the parametric
equations as a function of the initial position x,:

X=X+ g(xo)t (16.6.11)
and the general solution is
u(x, t) = u(xo, 0) = g(xo) = g(x — g(xo)t) (16.6.12)
Note that the gradients of u are given by

ou g'(xo)
ou__ gx) 16.6.13
* ox 1+g'(xe)t ( )
and .
5 P » |
W o) 2 = 9o g (Xo) (16.6.14)

Ox 1+ g'(xe)t

where g’ denotes the derivative of g with respect to its argument.

The characteristics have a slope proportional to 1/g(x,) in the xt plane
(Figure 16.6.1), and if g'(x,) is positive, which is typical for an expansion profile,
they will never intersect. However, for a decreasing initial distribution of u, that
isg'(xg) <0, typical for a compression profile, the characteristics will intersect.

The time evolution of the ‘compression’ branch of the initial distribution
u=g(x) is shown in Figure 16.6.1(c). Since point A propagates with a speed
uy =g(xy;) greater than the speed of point B, ug=g(xqs), point A will
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Figure 16.6.1 Behaviour of solutions to Burgers equation. (a) Characteristics corresponding to
initial profile shown in (b) and (c) time evolution of compression profile with shock formation
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progressively take over point B, resulting in a multi-valued profile as shown at
time ¢ = ¢t,. The solution at time ¢ = ¢, has clearly no physical significance, since
the function u cannot take on different values at the same time ¢, and in the
same location x. Therefore an initial profile with decreasing intensities will lead
to a breakdown of the continuous solution and to the appearance of a shock
discontinuity.

The shock will appear only when g'(x,) <0 or u, < 0 and at the time ¢, given
by the condition that the tangent to the u(x) profiles becomes vertical. This
happens at first for

-1

- (16.6.15)
max |g'(xo)l

The shock will move at a velocity C satisfying the Rankine—Hugoniot relation,
which becomes here

u2
[?] — Clu]=0 (16.6.16)

leading to the shock speed
C=1%(u,+u,) (16.6.17)

where u; and u, are the values upstream and downstream of the shock, with
u, < u;. Note that
u, < C<u (16.6.18)

that is the upstream waves propagate faster than the shock, feeding waves into
the shock, while the downstream waves propagate at a slower velocity.

If the initial profile covers values between u, and u,, these limits will define
the shock intensity. Let x,, and x,, denote the respective initial positions
corresponding to these values (Figure 16.6.1). It is easily shown (Whitham, 1974)
that the conservation property of the area under the curve u = g(x) implies that
the shaded areas in Figure 16.6.1(c) are equal and that

f " 90 dx = L[g(x01) + 9(x02)1 (03 — Xos) (16.6.19)

x01

The conditions for the shock position x, = x(t) can be expressed as
X4(t) = X0, + g(Xo )t
x,(t) = xo2 + g(x02)t

These three conditions define the quantities x,;, x,, and x,, and also allow
the development of the shock in time to be followed. A more detailed discussion
can be found in Whitham (1974).

(16.6.20)

Sinusoidal wave profile

Aninteresting test case for unsteady flows with shock formation and propagation
is provided by the time evolution of a single sinusoidal wave profile:



u(x,0)=Asinn—z+uo 0<x<L

= 16.6.21
§() Uy x<0andx>L ( )

The relations (16.6.19) and (16.6.20) allow the time evolution and the shock
formation to be followed, but a simple asymptotic situation results, which is
given by the following relations.

For t »t,, the shock moves at a speed

C=uyt+./Bt (16.6.22)

[u]= \/? (16.6.23)

where B/2 is the area under the sinusoidal curve, which remains constant
following (16.6.19); that is

and has an intensity

L 44L '
B= 2I [g(x) —ugldx=— (16.6.24)
0 T
The expansion part takes on a linear shape asymptotically:
u z? Ut < x < gt + /Bt (16.6.25)

Note that the amplitude decreases as t — oo, while the shock velocity increases,
both at a rate o \ﬁ if u, = 0. This solution is ilustrated in Figure 16.6.2.

| §10)

[ g LS

»

>

0 L uot ugt+ VBt

Figure 16.6.2 Solution of Burgers equation for an initial sinusoidal distribution
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1
' X

® =0 (uL+uR)t/2

Figure 16.6.3 Burgers solution for a propagating discontinuity

Initial shock discontinuity

A rather simple test case, which can be used both for steady and unsteady
computations, is provided by an initial discontinuous distribution (Figure 16.6.3):

uL x<0, t=0

(16.6.26)
ug x>0, t=0

u(x,0) = g(x) = {
The solution is given by (16.6.17), namely a shock propagating at speed
C = (uy, + ug)/2 with unmodified intensity [u] = u; — ug. If ug = — u; , the shock
is stationary and this forms a simple, although non-linear, test case for
steady-state methods.

Initial linear distribution

Actually, any initial distribution with g'(x) <0 between u, and u, will lead to
the same shock structure. For instance, a linear distribution (Figure 16.6.4)

Uy 4 x <0, t=0
u(x,0) = g(x) = ul(l—%>+u2% 0<x<L, t=0 (166.27)
Uy x>1L, t=0
will lead to the solution shown in Figure 16.6.4, where the characteristics are

also indicated. The shock is formed at a time given by equation (16.6.15), which
becomes here

t, = (16.6.28)
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Figure 16.6.4 Shock formation for an initial linear distribution
and at the position
X, =tyuy =L+t u, (16.6.29)
The solution is therefore, for ¢t > ¢,
u, +u
U, for x< —l—i—zt
u(x, )= (16.6.30)
Uy + U
u, for x>——=t

Expansion fan

If the initial distribution corresponds to g'(x) >0, there will be no shock
formation as described above. For an initial discontinuity

Uy x<0, t=0

(16.6.31)
uz X >O, t =0

u(x,0)=g(x) = {

with u, < u,, the characteristics behave as shown in Figure 16.6.5. Between the
points u,t < x < u,t, there is no information available and the solution is not
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Figure 16.6.5 Initial expansion discontinuity for Burger’s'equations Burgers'

determined by the intersection of characteristics. Hence a continuous solution
is possible and is given by

uy X/t <u,
u(x, t) ={ x/t Uy <xft<u, (16.6.32)
u, X/t > u,

This continuous solution, which corresponds to a series of characteristics
emanating from the origin with continuous slopes between u, and u,, is called
an expansion fan.

However, a discontinuous solution can also be defined for the same initial
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conditions. The solution

u x/t < U+,

) bt At

u(x,t)= " i " (16.6.33)
u, xt>—2—-2

satisfies the jump conditions and is clearly a solution to Burgers equation.

This solution, which corresponds to an expansion shock, has to be rejected
on physical grounds since it would violate the entropy condition. It can be
shown, by the analysis of the complete Burgers equation u, + uu, = vu,,, that
the continuous solution, equation (16.6.32), is the limit for v—0 of solutions of
the dissipative Burgers equation, while this is not the case for the discontinuous
solutions (see Whitham, 1974). Therefore an additional entropy condition is
necessary to restore the unicity of the inviscid solutions. Any scheme that would
maintain, or create, an expansion discontinuity on the test case of the type
defined by equation (16.6.31) would have to be modified by the addition of
some dissipative mechanism.

16.6.3 The shock tube problem or Riemann problem

The shock tube problem constitutes a particularly interesting and difficult test
case, since it presents an exact solution to the full system of one-dimensional
Euler equations containing simultaneously a shock wave, a contact discontinuity
and an expansion fan.

This particular problem, also called the Riemann problem, is altogether of
practical and theoretical interest. It can be realized experimentally by the sudden
breakdown of a diaphragm in a long one-dimensional tube separating two
initial gas states at different pressures and densities. The initial conditions are
the following:

= = = < t= 0
u=1u, p=pL pP=pL X < Xo (16.6.34)
Uu=tug, pP=Ppr P =Dr X > Xg t=0

with pg < p,. and the diaphragm is located at x = x,. We will assume that the
two regions contain the same gas.

If viscous effects can be neglected along the tube walls and if an infinitely
long tube is considered, avoiding reflections at the tube ends, the exact solution
to the Euler equations can easily be obtained on the basis of simple waves
separating regions of uniform conditions.

At the bursting of the diaphragm, at time ¢t =0, the pressure discontinuity
propagates to the right in the low-pressure gas and simultaneously an expansion
fan propagates to the left in the high-pressure gas. In addition, a contact
discontinuity separating the two gas regions propagates to the right in the tube.
This is illustrated in Figures 16.6.6 and 16.6.7, which show also the characteristics
and the discontinuities.



diaphragm
e

205

L

w3

®

State L State R
Initial state at t=0
/
Initial position
of digphragm
> —P >
: V )
Expansion Contact Shock wave
wave discontinuity
Flow state at t>0 -

Figure 16.6.6 Schematic presentation of the shock tube flow
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Since the shock and the contact discontinuity move in regions of uniform
conditions, they will have a constant velocity and the expansion is centred at
the diaphragm position xq, t =0.

We will distinguish the following regions: region R contains the undisturbed
gas at the low pressure pg. It is scparated by a shock wave from region 2 which
represents the disturbed low-pressure gas. The contact discontinuity separates
region 2 from the disturbed high-pressure gas region 3, which in turn has been
influenced by the expansion fan propagating to the left into the undisturbed
high-pressure region L. The expansion fan region, through which the flow -
quantities vary continuously, is defined as region 5.

Shock wave

The shock is generated between region R and 2, and for values of fluid velocities
u, and pressure p,, the normal shock relations, equation (16.1.28) to (16.1.30),
hold. As a function of Mach numbers or pressure ratio, the normal shock
relations are applied in Section 2.9 in Volume 1. One has, as a function of the
pressure ratio p,/pg = P,

P _ltaP ot (16.6.35)
pr o+P y-—-1
'uz — Ug P - 1 l .
— : (16.6.36)
cw  (1+aP)'? fuG=1)2
m=Ct_ P (16.637)
Cr P(uy — ug)
2
Cf” _patP ~ (16.6.38)
Cr 1+aP

The quantity C is the propagation speed of the shock in the undisturbed region R.

Contact surface

The contact surface sustains a discontinuity in density but the pressures and
velocities normal to the surfaces are continuous. Therefore the contact
discontinuity propagates at a velocity V equal to u,.

Along this surface, the following conditions have to be satisfied:

P3=D> (16.6.39)
Uuy=u,=V (16.6.40)

Expansion fan

The expansion fan is formed by the left running characteristics of slopes (u — ),
and the information between regions L and 3 is transmitted along the C, and
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C. characteristics. Hence, along the C, characteristics, the path line, the entropy
is constant:

S3=s5. (16.6.41a)
or
Ps _P (16.6.41b)
Py Pl
and along the C, characteristic, the Riemann variable is constant:
Y 3 -uL+cL=y ‘Uz + €3 (16.6.42)
or, when u; =0 and u; =V,
cL=cs+ ’%1 v (16.6.43)
From (16.6.41) and (16.6.42) one obtains the relation between V and ps:
(r-1)2y
V=2 cL-[l - (33> ] (16.6.44)
y—1 P

The above relations allow the determination of all the constant states in the
regions 2, 3 and L. In particular, expressing equation (16.6.40) in equation
(16.6.36) leads to a relation between u, =V and the pressure ratio P, while
another relation between V and P is obtained by introducing the condition of
pressure continuity across the contact surface, equation (16.6.39).in equation
(16.6.44). Eliminating V' between these two relations leads to an implicit equation
for P.
One obtains

2 P—1 _ 2 'C_L[<&)(7—l)/27_P(y—l)/27:|+u (16645)
Vi =DA+aP)? y—1 gl \px . Cr

which can be solved for known pressure ratios p, /pg by an iterative method,
for instance a Newton iteration. With the knowledge of P, all other variables
are determined, using the above relations.

Variations through expansion fan—region 5

Finally, the continuous evolution of the flow variables through region 5
separating the regions 3 and L has to be determined. The gas state in region
5is determined by conditions (16.6.41) and (16.6.42), which express the constancy
of the information carried by the characteristics C, and C. . Hence

Ps_n

(16.6.46)
Py Pl
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and

-1 -1
y u5+05=v

u +cp (16.6.47)

In addition, the expansion fan is formed by the C _ characteristics along which
y—1
2

Each characteristic of the expansion fan is defined by

d
us — cs = constant alongd—j =Us—Cs (16.6.48)

dx y+1 y—1
5= 3 Us —CpL— 5 u (16.6.49)

using equation (16.6.47). The combination of equations (16.6.48) and (16.6.47)
also shows that us and cs are separately constant along this characteristic,
implying that they can be defined by x/t = us —cs.

Hence, since us varies between zero and V, one has, within the expansion
fan, considering the diaphragm to be initially located at x = 0 (otherwise x is
to be replaced by (x — x,) for an initial position x,),

u ———2——(5+c +?_1u>
STywi\e v 2t

for — +o |<=<|{——V—c— u
or ( Uy CL) ¢ ( 2 L 2 L
cs= cL-”; ! (s — uy) = us —f (16.6.50)

ug\2H0-
Ps=pL| —
CL

This completes the solution of the shock tube problem.

An important observation is that the complete solution of the shock tube
problem is only a function of the ratio x/t and the initial conditions (p, u, p),,
(p, u, p)r- Also, it can be seen from the second of the above equations that the
flow acceleration through the expansion fan will reach sonic conditions, us = cs,
at the original diaphragm position x = 0.

Typical solutions are shown in Figures 16.6.8 and 16.6.9 for the following data,
in SI units for a perfect gas with y = 1.4 (see Problem 16.25):

Figure 16.6.8: p,=10% p =1, pg=10% ppg=0.125 wu =uz=0
corresponding to an initial pressure ratio of 10.
Figure 16.6.9: p,=10% p.=1; pg=10% pg=0010; u =ug=0

corresponding to an initial pressure ratio of 100
These test data correspond to those applied by Sod (1978).
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In the first case the shock pressure ratio is moderate, P = 3.031, while the
second case in Figure 16.6.9 corresponds to a strong shock with a pressure ratio
P =7.155 and supersonic Mach numbers after the expansion. The variations
of pressure, density, Mach number, entropy, velocity and mass flux pu are shown
as a function of distance.

Looking at the Mach number evolution from right to left, the first
discontinuity is due to the shock wave propagating downstream, followed by
the contact discontinuity. By analysing the other curves it is seen that the shock
wave corresponds to discontinuous variations of all the variables including
entropy, while velocity and pressure are continuous over the contact
discontinuity. Upstream of the contact discontinuity, the smooth variation
represents the expansion waves. Observe the linear variation of the velocity in
the expansion region and its isentropic nature.

16.6.4 The quasi-one-dimensional nozzle flow

This flow forms an excellent family of test cases for steady-state computations,
allowing a variety of conditions to be tested: in particular, subsonic flows,
supersonic flows without shocks, subsonic-supersonic transition without
shocks, subsonic-supersonic-subsonic flow with shocks. Also the impact of
boundary conditions on convergence and accuracy can be investigated.

The exact one-dimensional flow in a nozzle of varying cross-section S(x) is
solved in many textbooks (see, for instance, Shapiro, 1953, or Zucrow and
Hoffman, 1976).

For isentropic continuous flow one has, with subscript 1 indicating inlet
conditions and referring to Figure 16.4.1,, 153

Do = Po1

(16.6.51)
~ To = T°l
T —1 =1y r=1 2
Jo_ 14 ¥ (&) - <&> =2 (16.6.52)
T 2 p p c
The critical conditions are defined by
. ( 2 )(7+ H2(-1)]
c* = poc 16.6.53
p PoCo y+1 ( )
and the critical mass flow rate by
m* = p*c*S* (16.6.54)

The critical section S* is the minimal area where sonic conditions are reached
when the mass flow is at the critical value m*.
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The relations defining the mass flow rate at a section S can be written as
y—1 -+ D2y - 1)]
m = poCOMS(l + ‘2_M2>
m ')”'To _
PoS

Expressing constancy of mss flow, one obtains the ratio of the current section
area to the critical area S*:

v+ 1/12(y- 1)) - o+ D20 1]
_S_=L<L.E> =L[L(1+7_1Mz)]
S* M\y+1T Miy+1 2

(16.6.562)

yM(l L 1 Mz)—m D2=1] (16.6.55)
2

(16.6.56b)

Choked flow conditions, that is 1 = p*S*c* = m*, are obtained if the throat
area S, equals the critical area S*. For instance, in a Laval nozzle with throat
area S, = S*, the mass flow rate will be equal to the maximum value allowed
and the throat Mach number will be equal to 1.

If, on the other hand, S* is selected such that S* < S,, the flow is unchoked
and M,, the throat Mach number, will never reach the sonic value of 1. Its
value will depend on whether the inlet flow is subsonic or supersonic. In the
subsonic case (M, < 1)M, will also be subsonic and in the supersonic case
(M, > 1)M, will also remain supersonic. Hence, by selecting the stagnation
conditions at the inlet, py,, Ty;, as well as the critical area S*, a variety of
shock-free test cases can be defined.

Since, for a given mass flow m > m*, two solutions are always possible, a
subsonic and a supersonic one, the inlet value of the Mach number has also to
be selected; refer to Figure 2.9.6 in Volume 1.

If shocks are to be considered, the Rankine—Hugoniot relations have to be
satisfied, that is over the shock

To=To,
2 2+ UM{
" yMI-G-1)
P _2Mi=(—1)
DL y+1
Por _ ([0 + 1/2IME/{1 + [y — 1y/2IM "
po. {27/ + DIM}—(y—D/y + D}HO~D

where the subscripts R and L denote respectively the conditions at the right
(downstream) and the left (upstream) sides of the shock.

(16.6.57)
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The definition of a test case is then as follows:

(1) Define S(x), $*, poy, Toy, My, X 4,,- The Mach number variation M(x) is
obtained from the iterative solution of above equations, where the initial
value M, will allow selection of the subsonic or supersonic branch.

(2) When a sonic point is reached, at the throat of a converging—diverging
nozzle for instance, a choice has to be made again between the subsonic
or supersonic evolution.

(3) Ifashock point is reached, the shock relations (16.6.57) are applied to find
the conditions downstream of the shock, fixing the shock intensity and the
stagnation pressure downstream of the shock.

(4) Downstream of the shock, the isentropic relations (16.6.51) to (16.6.56) are
applied again with the new value of the stagnation pressure.
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PROBLEMS

Problem 16.1

Show that a vortex sheet discontinuity is always associated with a discontinuous density
variation, implying a discontinuous entropy, if constancy of total enthalpy is assumed.
Investigate the case [s] =0 with [H] 0.

Nara‘s;'ﬂ'\

(13#3)
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Hint: Consider the possibility [p] =0 and show that this implies [s] =0 and [pv?1=0
from the relation between entropy and stagnation pressure and the definition of
stagnation pressure as a function of Mach number.

Problem 16.2

Show that the flux hypervector F can be written in a condensed form as

m
: m®m+ I
F=|""% 7P
p p
where
100
I=10 1 0|=(,l,1)
0 01
defines the three column vectors I, I, I, as the matrix representation of the unit vectors
I, 1, 1,
1 0 0
1,=10 =11 I,=|(0
0 0 1
Obtain also the condensed form of the flux vector components
m
i +p1
f="»p "7
m
—(e+p)
P
and similar relations for g and h:
n
n
m—+pI,
g=| »
n
—(+p)
)
1
1
m—+pl,
h=| »p y
l -
—(+p)
P
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Problem 16.3

Derive equations (16.2.22) to (16.2.25) for the components of the flux Jacobians in
conservative variables.

Problem 16.4

Derive by a direct calculation the Jacobians B and C of the flux components g and h
given in equations (16.2.27) and (16.2.28).

Problem 16.5
. Lo . kive.
Derive the pressure equation in primite-Variables (16.2.38).

Problem 16.6

Show that the set of three Jacobian matrices in primitive variables (16.2.44) to (16.2.46)
can be written as

0 pc2IT 7
where the unit matrices are defined by
T=|IT, II, 17

with
II=(1,00 I17=(0,1,0 I7=(0,0,1)

Problem 16.7

Derive the explicit form of the transformation matrix between conservative and primitive
variables ( 16§2.4\1~8) and its inverse (16.2.49).

Problem 16.8

Derive the quasi-one-dimensional Euler equations for the flow in a nozzle of varying
cross-section S(x) for the conservative varlable U, taking as the starting point the
conservative form (16 4.1).

¥iss

Hint: Obtain the form

ap dp , lpu) dpu)  1dS

a ox | sdx’
d(pu) + d(pu* + p)_ _1dS >
at ox °s dx

HpE) , dpuH) _ _1dS

o dox Sdx
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Problem 16.9

Obtain the diagonalization matrix P~! and its inverse P for the one-dimensional Euler
equation, given by equations (16.4.11) and (16.4.12) by a direct calculation of the left
eigenvectors of the Jacobian matrix A4 in conservative variables.

Problem 16.10

Obtain the matrix (16.5.13) of the right eivenvectors L in primitive variables by a direct
determination of the right eigenvectors of the matrix K, following the procedure applied
to obtain the left eigenvectors. Determine the normalization coefficients by the condition
LL™' =1, using the form (16.3.29).

Problem 16.11

Obtain the matrices L™! and L of the left and right eigenvectors of the matrix K in two
dimensions by a direct determination of the eigenvectors. Fix the normalization constants
such as to obtain equation (E16.4.5) and (E16.4.6).

Problem 16.12

Obtain the matrices L~ ! and L of the left and right eigenvectors of the matrix K in two
and three dimensions for the normalization u® = u® =1 /ﬁ.

Problem 16.13

Calculate the matrix P of the right eigenvectors of the conservative Jacobians K, equation
(16.5.23), by direct multiplication P = ML.
Obtain the same matrix by a direct computation of the eigenvectors of K.

Problem 16.14

Derive the matrices L, P~! and P associated with the choice defined by equations
(16.5.29) and (16.5.30) for L~! by finding the right eigenvectors corresponding to the
normalization (16.5.29).

Problem 16.15

Obtain the characteristic variables (16.5.48) and the characteristic form (16.5.49). Show
that it reduces to equations (16.5.51) and (16.5.52) in the two-dimensional case.

Problem 16.16
Consider the quasi-one-dimensional system in the variables
pS
U=|puS
pES -

and calculate the Jacobian of the source term with respect to U.
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Hint: The Jacobian of the source term is given by

0 0 0
168 |u?
-)——(= —-u 1
=D3ol 2
0 0 0

Problem 16.17

Consider the quasi-one-dimensional system in the variables

pS

rS

and derive the Jacobian of the flux and of the source term.

Problem 16.18

Consider the stationary, two-dimensional supersonic isentropic flow analysed in
Example 16.4.2. Work out all the equations and in particular the matrices of left and
right eigenvectors.

Repeat the analysis when the continuity equation is added, leading to a system of
four equations for the variables (p, 4, v, p). Show that the same eigenvalues are obtained
with the first one appearing twice and derive the associated eigenvectors.

Show also that the additional characteristic equation expresses the constancy of
entropy along the streamline.

Problem 16.19

Define the Jacobians, their eigenvalues and left and right eigenvectors for the
quasi-one-dimensional Euler equations, written in the variables

s
X=|c

u

where c is the speed of sound and the entropy s has been non:dimensionalized by the
specific heat coefficient c,.

Obtain the compatibility relations and the source term as well as the characteristic
variables and equations.

Derive the transformation matrix Y =0U/0X between the X variables and the
conservative variable U of Problem 16.16.

Hint: The entropy is defined as a function of p and p by the relation ds/c, =dp/p — ydp/p
and in non-dimensional form by ds=dp/p —ydp/p.
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The Jacobian matrix is spl ol
U 0 0 ‘:‘(L"’:f“f'a
. ; i
0 u Lt c
2
- 2
-1 r-1
The characteristic variables are
ow, = bs
2
0w, =——0c + ou — os
y—1 Yy —1)
-2
owy =—-6c+du + ds

y—1 yy—1)

Problem 16.20

Define the Jacobians, their eigenvalues and left and right eigenvectors for the
quasi-one-dimensional Euler equations, written in the variables

p

where ¢ is the speed of sound and the entropy s has been non-dimensionalized by the
specific heat coefficient c,.

Obtain the compatibility relations and source term as well as the characteristic
variables and equations.

Derive the transformation matrix Y =0U/dX between the X variables and the
conservative variable U of Problem 16.16.

Hint: The Jacobian matrix is

u p O
c? c?
— u pu—
P Y -
0 0 u
and the matrix of the left eigenvectors .  ;; e
0 0 1 .
cp
=Py
cp
Y
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Problem 16.21
Define the Jacobians, their eigenvalues and left and right eigenvectors for the quasi-one-

dimensional Euler equations, written in the variables

p
X =]pu
p

Obtain the compatibility relations and the source term as well as the characteristic
variables-and equations.

Derive the transformation matrix Y =dU/6X between the X variables and the
conservative variable U of Problem 16.16.

Hint: Obtain

0 1 0 u
A=|—-u® 2u 1 A= u—c
—uct ¢ u u+tc
1 0 -1/
o u 1 1
L 'AL=A L '=(2c 2 2
u 1 1
2c 2 2¢2
1 1 1
L=\u u—c u+c
0 ¢? c?

Problem 16.22

Define the Jacobians, their eigenvalues and left and right eigenvectors for the quasi-one-
dimensional Euler equations, written in the variables

P
X=]|c
u

where c is the speed of sound and P the logarithm of the pressure P =Inp.

Obtain the compatibility relations and the source term as well as the characteristic
variables and equations.

Derive the transformation matrix Y =dU/6X between the X variables and the
conservative variable U of Problem 16.16.

Problem 16.23 ¥

Consider the one-dimensional Euler equation for isoenthalpic flows H = H,,.
By extracting the pressure from H = H,, write the system of equations for the
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variables

P
pu

Calculate the eigenvalues and eigenvectors of the Jacobian matrix.
Obtain the compatibility relations as well as the characteristic variables and equations.

Hint: The Jacobian matrix is

0 1
y—1 y+1 , y+1
- u
Y 2y ¥
and has the eigenvalues
+1 -1 +1
A=+ bl bz(u)=L—(H—y—-u2>
2y ¥ 4y
The matrix of the left eigenvectors is
L1 -, 1
-, 1
and the inverse matrix L, containing the right eigenvectors as columns, is
1 —1]1
L= —
Ay —4yl2b%

Problem 16.24

Define a transformation matrix P with columns, equal to the right eigenvectors of 4,
such that one can write

™M

U=Y s

i=1

Hint: Choose the normalization coefficients a, 8, d in order to satisfy this property. Obtain
Va=ply—1)/y; B=—b=1y/c.

Problem 16.25

Write a program to solve the Riemann problem (shock tube problem) for the following
initial data (all data in SI units) for air taken as a perfect gas with y = 1.4:

Casel: p =10% p,=1; py=10% pr=0.125 u, =u, =0
Case2 p . =10% p =1; py=5x10% p,=0050; u =u,=0
Case3: p,=10% p =1, py=10% pe=0010; u, =u; =0

Generate plots of the x variation of pressure, density, entropy, Mach number, velocity
and mass flux at fixed times. Take the initial position of the diaphragm at x = 5.

Hint: Solve the equation (16.6.45) for P with a Newton—Raphson method. Obtain the
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following values:

Case 1: P=3.031; p,=30313 u,=293; C=354
Case2: P=3729; p,=18643; u,=399; C=0684
Case3: P=17.155 p,=7155 u,=587, C=2838

Problem 16.26

Write a program to calculate the exact solutions of the stationary flow in a diverging
nozzle of cross-section

S(x)=1.398 + 0.347tanh [08(x —4)] 0<x<10

Consider the following cases, with T, = 300K and p,, = 1 bar and air considered as a
perfect gas y = 1.4.:

Subsonic flow: $* = 0.8 with a subsonic inlet Mach number

Supersonic flow: $* = 0.8 with a supersonic inlet Mach number

Transonic flow with a shock at x = 4 and S* = 0.8 and supersonic inlet Mach number

Hint: Solve equation (16.6.56) by a Newton—Raphson method and select an intial guess
to be subsonic or supersonic according to the chosen solution. Note that all these cases
are unchoked.

Problem 16.27

Write a program to calculate the exact solutions of the stationary flow in a converging-
diverging nozzle of cross-section

X 2
1+15 1-g 0<x<5
S(x)=

x\2
1+0.5(l—g) 5<x<10

Consider the following cases, with T, = 300K and p,, =1 bar and air considered as a
perfect gas y = 1.4:

Subsonic flow in the whole domain: $* =0.8

Subsonic flow in the whole nozzle with sonic velocity at the throat: $* = 1 (select the
subsonic branches at all points)

Subsonic-supersonic flow without shock: $* = 1 (select the subsonic solution upstream
of the throat and the supersonic solution downstream of the throat)

Supersonic flow in the whole domain: §* =0.8

Transonic flow with a shock at x = 7 with a subsonic inlet Mach number and $* = |

Transonic flow with a shock at x = 7 with a supersonic inlet Mach number and $* = 0.8

Hint: Solve equation (16.6.56) by a Newton—Raphson method and select an initial guess
to be subsonic or supersonic according to the chosen solution.
The cases with §* = 0.8 are unchoked since the throat area corresponds to § = 1.

Problem 16.28

Define the Jacobians, their eigenvalues and left and right eigenvectors for the quasi-one-
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dimensional Euler equations, written in the variables
p
X=lu
s

where c¢ is the speed of sound and the entropy s has been non-dimensionalized by the
specific heat coefficient c,.

Obtain the compatibility relations and the source term as well as the characteristic
variables and equations.

Derive the transformation matrix Y =dU/0X between the X variables and the
conservative variable U of Problem 16.16.
Hint: The Jacobian matrix is

. u pct 0
1
p

0 0 u
and the matrix of the left eigenvectors is

N | =

Lt=|2p

2p 2

and the inverse matrix L is defined as

Problem 16.29

Define the Jacobians, their eigenvalues and left and right eigenvectors for the quasi-one-
dimensional Euler equations, written in the variables

X=|c
M

where c is the speed of sound and M is the Mach number.
Obtain the compatibility relations and the source term as well as the characteristic
variables and eauations.
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Derive the transformation matrix Y =dU/0X between the X variables and the
conservative variable U of Problem 16.16.

Hint: The transformation matrix Y is defined by

1 0 0
cM pM c
¥ - p p
2pE
E 22 oM
c

where the total energy is written as E = c2[1/5(y — 1) + M?/2).

Problem 16.30

Write the Rankine-Hugoniot relations in one dimension. Show that the Rankine—
Hugoniot relations for a moving shock of velocity C are identical to the stationary
shock relations (16.1.28) to (16.1.30) for the velocities 4, — C and u, — C.

Show that the pressure increase over the stationary shock is given by

1 1 2 1/2
[p]=p,%[u]2+p,[u]{(y—:—) [u]’+ci}

where the subscripts 1 and 2 correspond to the regions upstream and downstream of
the shock.

Problem 16.31

Derive the exact solution of Burgers equation for a block wave defined as
u=u, forx<0
u=u, for0<x<x,;
u=u, forxzx,

with uy < u,.

Show that the exact solution is composed of an expansion (linear variation) followed
by a shock. Show also that the initial square wave takes a triangular shape for all times
after the expansion wave reaches the shock.

Hint: The top of the expansion moves at a speed u; and the shock at speed (ug + u,)/2,
while the foot of the expansion has a speed equal to u,.



Chapter 17

The Lax—Wendroff Family of
Space-Centred Schemes

The space-centred algorithms for the Euler equations were historically the first
to be derived and still form the basis and the reference for all the other schemes
derived since then.

The second-order accurate scheme of Lax and Wendroff is the most important
of them, due to its uniqueness for linear equations (it is the unique second-order
central explicit scheme for the linear convection equation on a three-point
support) and its essential role as the guideline for all schemes attempting to
improve certain of its deficiencies. Since all centred second-order accurate
schemes refer to the Lax—Wendroff algorithm, its weaknesses, such as the
generation of oscillations at discontinuities, play an essential role in the
understanding of the behaviour of centrally discretized schemes.

The essential property of the Lax—Wendroff schemes lies in the combination
of time and space-centred discretizations. This is required in order to achieve
second-order accuracy with an explicit time integration on a three-point support,
and the Lax—Wendroff schemes are therefore the simplest explicit schemes of
second-order accuracy.

Although this scheme is unique for the one-dimensional linear convection
equation, many variants can be defined for non-linear fluxes, even in one
dimension. They all reduce to the same linear form and are generally structured
as predictor-corrector algorithms with an explicit time integration. However,
implicit extensions have been developed and will be presented in Section 17.4.

We will consider in the following all centred explicit or implicit schemes of
second-order accuracy with combined space—time discretization as belonging to
the Lax—Wendroff family.

We will generally present the various schemes in their one-dimensional form
and after a one-dimensional analysis we will introduce their multi-dimensional
formulations and illustrate some properties by examples of applications.

The one-dimensional scalar, non-linear conservative form will be considered
as

o, o _
ot Jx
or in quasi-linear form as

2—1: + a(u) g—: =q with a(u) = g

224
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When written as a system we will use U as the basic set of variables and A(U)
as the Jacobian matrix. Similar conventions apply to the multi-dimensional case.

The field of one-dimensional flows offers a wide test space for methods and
algorithms for the numerical computation of inviscid, steady or unsteady flows.
This is due to a combination of complexity of the one dimensional Euler
equations, making them representative of the full non-linearity of real flows
and of sufficient simplicity, allowing the existence of exact solutions for both
stationary and time-dependent situations.

In addition, the idealized one-dimensional Burgers equation, u, + uu, =0,
and the even simpler case of the linearized, first-order wave equation,
u, + au, = 0, offer non-trivial test cases for accuracy and convergence properties
of numerical schemes for hyperbolic equations, particularly with regard to the
extremely difficult problem of representing accurately propagating disconti-
nuities such as shock waves or contact discontinuities; several examples were
presented in Volume 1.

Nearly all existing schemes have initially been analysed and developed on a
one-dimensional basis and a considerable literature on the properties of
one-dimensional algorithms, including topics such as stability and dissipation
properties, influence of boundary conditions on convergence and accuracy,
treatment of discontinuities, etc., is available.

An existing scheme that behaves statisfactory on a one-dimensional basis
might lead to difficulties in its extension to two- or three-dimensional flows.
However, there is no example of a scheme that failed in the one-dimensional
version and still worked well in its multi-dimensional extensions. It is therefore
safe to say and to recommend that any scheme should first be tested on a
one-dimensional basis before extending it to multi-dimensional problems.

An essential property of discretized schemes, already discussed in Section 6.1
in Volume 1, is the conservative property. Essentially, this property requires that
the time derivative of the integral of U over a given space domain only depends
on the boundary fluxes and not on the fluxes within this domain. This ensures
that the discretization technique actually represents a discrete approximation
to the integral form of the conservation laws.

The conservative property of a discretization leads to a unified formulation
of a scheme by the introduction of a numerical flux F*, where F* is a function
of mesh point values U, with components f*, g* see Lax (1957). All conservative
explicit schemes have to be expressed in the following form, written here in two
dimensions:

, . —At At
UU.H — UU:KX—(!‘?‘*’ 1/2,j—f?- 1/2,})— A_y(g:j+1/2 _g:j—IIZ)

with the consistency condition

YUy, U, ) =f(U) whenall U,=U
g*U,,..., U, . )=g) whenall U; = U
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In Section 17.1. we will introduce the first-order Lax—Friedrichs scheme which,
although not belonging to the Lax~Wendroff family, has in common the
combined space—time and space-centred discretization. Historically, it is the
unsatisfactory behaviour of this scheme that has led Lax and Wendroff to search
for a second-order discretization.

The other sections will be devoted to the analysis of the basic explicit
Lax—Wendroff scheme in one and two dimensions, including the non-linear
variant of MacCormack and their generalization by Lerat and Peyret.

Several properties of these schemes have already been introduced in Chapters 8
and 9 of Volume 1 for the linear scalar case and eventually for the Burgers
equation, and we refer the reader to the appropriate sections for an introduction
and stability analysis,

Section 17.3 will introduce the important concept of artificial viscosity or
dissipation which plays an essential role in space-centred discretizations,
particularly in the vicinity of strong gradients and discontinuities.

Section 17.4 will present the very interesting family of implicit variants of the
Lax—Wendroff schemes developed by Lerat.

17.1 THE SPACE-CENTRED EXPLICIT SCHEMES OF
FIRST ORDER

The family of schemes considered in this section are perhaps the first representa-
tives of the modern developments in the field of numerical discretizations of the
Euler equations. They are known as the schemes of Lax or Lax—Friedrichs
(Lax, 1954).

They are not applied in their original form any longer, due to their poor
first-order accuracy, but several variants with improved accuracy are still in
use (see Section 17.1.3). They form, however, an interesting base for comparisons
with other schemes, and can be used as intermediate step in higher-order
schemes, as in the Richtmyer two-step variant of the second-order
Lax-Wendroff method, to be discussed in Section 17.2.

17.1.1 The one-dimensional Lax—Friedrichs scheme

The basic idea behind this scheme is to stabilize the explicit, unstable central
scheme obtained from a central differencing of the first derivative of the flux term.

When applied to the linearized convection equation u, + au, =0, it has been
shown in Chapter 7 in Volume 1 that the explicit scheme

o
Wl = _5(“?+1"u?—1) (17.1.1)

is unstable. The variable o is the Courant number, also called the CFL number:

aAt
g =

— 17.1.2
Ax ( )
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- The stabilizing procedure consists of replacing u} by (u}, ; +u!_,)/2, leading to
the scheme

n+1

u; —(u.“ ) (u:+l —u}_,) (17.1.3)
When applied to the conservative form U, + f, =0, the Lax-Friedrichs scheme
is

U;'+ 1 + U;'— 1

2 —(f.+1 fio) (17.1.4)

n+1 __
Urtt=
where

At
T=— 17.1.5
Ax ( )
Comparing equation (17.1.3) with equation (17.1.1) it is seen that the stabi-
lization procedure of Lax corresponds to the addition of a dissipative term
proportional to the second derivative of u. Equation (17.1.4) can also be
written as

U"H U"——(f|+1 1)+ (U.+1 2U?+U?—l) (17'1'6)

Since the last term between parentheses can be considered as the discretization
of (Ax%/2At-U,,), the Lax~Friedrichs scheme can be viewed as being obtained
from an explicit Euler time integration of an equation of the form

ou  of aazu

ot ox  ox?
which is a dissipative equation with the numerical viscosity a.
This scheme has been analysed in Chapter 8 in Volume 1 for the linear

convection equation and from the truncation error analysis, in the linearized
case f = aU, with constant a:

(17.1.7)

=2 Ax(1—0?) =22 (1 - 17.1.8
" x(1—06%)= AL ( a?) ( )
For a non-linear equation, one can deduce, from equations (9.4.21) and (9.4.24),
Ax?
“=2_A?(1 2)+ (31 —1)ay U, (17.1.9)

This shows that the system is first-order accurate at constant o, that is for a
fixed ratio At/Ax. For independent variations of Ax and At, one could consider
the scheme to be second-order accurate in space and first-order accurate in
time. In practice, however, one operates at a fixed Courant number, so that the
Lax-Friedrichs scheme is to be considered as a first-order scheme in space and
time. Equation (17.1.9) contains a non-linear contribution to the numerical
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dissipation, under the form of a term proportional to a, = ay* U, (the subscripts
indicate partial derivatives).

Linearized stability analysis

It has been shown in Chapter 8 that the linearized, one-dimensional Lax—

Friedrichs scheme is conditionally stable by a Von Neumann analysis, satisfying

the Courant—Friedrichs—Lewy condition, in brief the CFL condition.
Applying the analysis to the linearized system U,+ AU, =0, for a finite

Fourier mode k, with ¢ = k Ax with I =,/ —1, one obtains
G =cos ¢ — ItAsin ¢ (17.1.10)

The eigenvalues A(G) of G are determined from (

A(G)=cos¢—I§A(A)sin¢=M(G)|e’° (17.1.11)
X
We define
5=20 304 (17.1.12)
Ax

where A(A4) is an eigenvalue of the Jacobian matrix A and the Courant number
of the system is

At
0 == A Ay = 7P(4) (17.1.13)
Ax
The stability condition p(G) < 1 is satisfied for the CFL condition, since 4 has
real eigenvalues: z

o=y =2 s el <t (17.1.14)
Ax Ax

where p(A) is the spectral radius of the matrix A4 equal to |u + c| for the system
of one-dimensional Euler equations. This is a necessary and sufficient stability
condition.

The dispersion and diffusion errors are obtained from the amplification matrix
by separating the phase and the amplitude.

The error analysis can be performed on G, through the eigenvectors A(G), as
shown in Chapter 8, where ¢ is defined by equation (17.1.13).

The phase @ of G is given by

tan® = +otan¢ (17.1.15)

and the error in phase is obtained by the ratio of ® and of the phase of the
exact solution a¢. The relative phase error is

_tan” Yo tan ¢)

" (17.1.16)

1)
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Since &g is mostly greater than 1, in particular for ¢ = n/2, gg = 1/0, the phase
error is a leading error, namely the numerical computed waves propagate at a
higher velocity than the physical waves, since the numerical phase speed
a,..=®/(kAt)=ad/o¢ and the ratio of propagation speeds is equal to
Apum/d = Eg-

The dissipation error is defined by

ep =|G| = (cos? ¢ + a2 sin? ¢)'/2 (17.1.17)

The highest damping occurs for ¢ = /2, that is in the mid-range frequencies
‘with |G|, = 0, and any discontinuity will be strongly smoothed out for low
CFL numbers ¢ and therefore this scheme is not very accurate.

Observe that ¢ =1 reproduces the exact solution U7*!=U?"_,, since it
corresponds to G = 1. Note also that, since G(r) = 1, the scheme is not dissipative
in the sense of Kreiss.

Non-linear formulations

The general form of a conservative discretization is based on the introduction
of numerical fluxes f*, such that the scheme can be written under the form

U?+1=U?—T(f?:1/2—f?—nl/2) (17.1.18)

When compared to the formulation (17.1.4), one obtains
1 1
f?+1/2 ==/ +fi+1)_*(Ui+1 -Uy
2 27

1
2t
as the numerical flux defining the Lax-Friedrichs scheme. Here f, , , , is defined
as fiy12=(fi+fi4+1)/2, which is distinct from f[(U;+ U,,,)/2] in the
non-linear case.

In the steady-state limit, the numerical scheme solves for the balance of the
numerical fluxes f}¥,,,=f¥,, as an approximation to the balance of the
physical fluxes f,,, 12=Ji—12- The resulting stationary solution satisfies
Jisr2—Jic12=WU;4, —2U;+ U,_,)/2t instead, and is dependent on the ratio
1=At/Ax.

=fi+l/2_ (Ui+1—Ui) (17.1.19)

17.1.2 The two-dimensional Lax—Friedrichs scheme
Applied to the two-dimensional system of Euler equations, written as
ou adf o

(17.1.20)
ot dx dy
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the generalization of the one-dimensional scheme (17.1.4) is

Un+l _(U+11+ U‘ 1j U:.',j+1+U"l 1) (f¢+11 f:"—l,j)

T
—f(g;'_m —dgij-1) (17.1.21)

where

A At
=2t =2 (17.1.22)
Ax Ay
This scheme can be represented by the stencil in Figure 17.1.1.
The linearized stability condition is obtained from the constant coefficient
quasi-linear form
6_U+ ou Ba—U—O (17.1.23)
ot x dy
Applying a standard Von Neumann analysis, with ¢, =k, Ax and ¢, =x,Ay,
one obtains the amplification matrix

=1(cos ¢, + cos ¢,) — I A1, sin ¢, — IBr,sin @, (17.1.24)

‘t

() t=(n+1)At
1/4 - Uy 2
1 / J)Z( V4
j
X X t=nAt
1/4 + o,/ 1/4 — S, "7

X
/ /.IJM +0, /2 /
i+l 4 y i1

1

Figure 17.1.1 Computational stencil for the standard two- dimensional Lax—
Friedrichs scheme applied to the linearized Euler equations
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If the matrices A and B would commute (which is not the case for the Euler
equations), they would have the same eigenvectors and one would obtain A(G)
for the eigenvalues of G:

1
AMG)==(cos ¢+ cos p,) — 128 3(4)sin b — 2L )(B)sin ¢, (17.1.25)
2 Ax Ay
Defining
Oy = ﬂl(A)m" = rp(A) a,v = ﬂ'q‘(B)max = Tp(B) (17126)
Ax Ay

A(A),,., and A(B),,, being the maximum eigenvalues of the Jacobians 4 and B,
the necessary and sufficient stability condition, obtained in Chapter 8,
Section 8.6.2, is

o2+02<}
or \
) At? At? 1
Lt +—@v+c)P<- 17.1.27
sz( ) Ayz( ) 3 ( )

This is illustrated in Figure 17.1.2 in a diagram of o, and o,, where the stability
region is inside a circle of radius ,/2/2.

When the matrices A and B do not commute, there are no general conditions
known that are necessary and sufficient for the Von Neumann stability.
However, some sufficient conditions can be obtained for A,B being real
symmetric matrices. As seen in the previous chapter for the full system of Euler
equations, the Jacobians A and B are not symmetric but a similarity trans-

P

-«

Domain of instability

=
S
v

Figure 17.1.2 Two-dimensional Lax—Friedrichs scheme.
Necessary and sufficient Von Neumann stability
condition for commuting Jacobian matrices
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formation § can be found, which simultaneously symmetrizes A and B (Turkel,
1973; Harten, 1983a); that is there exist non-singular matrices S such that

SAS~'=4, and SBS™!'=B, (17.1.28)

where A, and B, are symmetric matrices. In this case, the following conjecture
has been made by Turkel (1977), which provides a guideline for obtaining
sufficient conditions for stability in the non-commuting case:

Turkel’s conjecture: If the amplification matrix G of a symmetric hyperbolic difference
scheme is power bounded (that is the scheme is stable) for commuting matrices
A, B,...,when their real eigenvalues are restricted to some subset Rg, then G is also
power bounded for all real symmetric matrices having their eigenvalues restricted to the
same subset Rg.

The scheme is said to be symmetric hyperbolic if G is symmetric, that is its real
and imaginary parts are both real symmetric matrices. Within this conjecture,
the above condition (17.1.27) can be considered as sufficient for stability of the
Lax—Friedrichs scheme (17.1.21). Other sufficient conditions are summarized
for a variety of explicit central schemes in Yanenko et al.(1984). For instance,

o, <! and 9o,<} (17.1.29)

which is represented by the region inside the square of Figure 17.1.1.

A variant of the scheme (17.1.21) can be defined where the corner points of
the mesh cell are used for the averaging term as in Figure 17.1.3 (Yanenko et al.,
1984):

1 n n
Ut =Z(U:"+l,j+l + U1t U e H U jo0)
Tx n (] n n
_Z(fi+1,j+1 +f|‘+1.j-1 _fi—l.j+l —fi—l,j—l)

T
_Zy(g?+ Liv1 T Oi-1 01— i 1y-1 —9:"—1.1-1) (17.1.30)

or introducing the difference operators
ﬁxUl‘f = %(UH 1. + Ui— l,j) ﬂinj = %(Ui,j+ 1+ Ul.j-— 1)
SxUl'.i=%(Ui+l,j— Ui—l,j) gyUl'i=%(Ui,j+l -U
U?f t= By — Tty 0% fij— f,ﬁxéﬁg.-,- (17.1.32)
From Figure 17.1.3, it is seen that the modified scheme decouples the even- and
odd-numbered mesh points. This could generate some oscillations; see Chapter 4

in Volume 1 for a discussion on this problem.
The linearized amplification matrix is (see Problem 17.2)

G=cos¢,cos¢p,—Ia.sin¢p,cosd,—Iag,cosd,sing, (17.1.33)

(17.1.31)

hj=-1
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Figure 17.1.3 Computational stencil for the two-dimensional Lax-Friedrichs scheme
(17.1.30)

and sufficient stability conditions are given by
o, <1 and 6, <1 (17.1.34)

increasing the stability range with respect to the original scheme (17.1.21).

17.1.3 Corrected viscosity scheme

An attempt to improve the accuracy of the Lax—Friedrichs scheme by achiev-
ing asymptotically second-order accuracy for steady-state problems has
been introduced by McDonald (1971) and further analysed by Couston et al.
(1975).

In the one-dimensional case, the quantity (8 Ax?/At)u,, is substracted from
the right-hand side of equation (17.1.7), leading to a scheme

T 1
0 == STy~ ) 0 2 )~ D~ 2l )

(17.1.35)

where the last term is updated every N iterations; that is [ is kept constant
between two updatings and set equal to I = N-mod(n, N), where mod(n, N) is
the integer part of n/N.
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When this term is not updated, the scheme has the properties of the original
Lax scheme, but the solution is regularly corrected every N iterations for the
accumulated truncation error.

The solution of the difference equation converges to the solution of the

corrected equation
= 2y Ax?
w+fi=1—-f—0¢ )2At Uy (17.1.36)
and if the coefficient B is chosen as f =1 — g — O(Ax), the final accuracy will
approach second order. An improvement in accuracy is obtained, however
calibrations of N and B are required. In particular, the corrected scheme is
linearly stable only if N is larger than the maximum number of mesh points
on the x axis. The interested reader will find more details in Van Hove and
Arts (1979). Note that the Lax—Friedrichs version of McDonald (1971) is
probably the first application of a finite volume method to the Euler equations
(see Problem 17.3).
Another scheme based on a first-order discretization with corrected viscosity
in order to approach second-order accuracy has been developed by Denton
(1975, 1982) and is widely used in the field of internal turbomachinery flows.

17.2 THE SPACE-CENTRED EXPLICIT
SCHEMES OF SECOND ORDER

The second-order space-centred explicit schemes are all derived from the
basic Lax—Wendroff scheme (1960). It has already been shown in Chapter 9 in
Volume 1 that this scheme is the unique second-order space-centred
discretization on the three-point support (i—1,i,i+1) for the linear
one-dimensional convection equation. Therefore, the numerous variants of the
Lax—Wendroff scheme differ in the treatment of the non-linearities and in their
multi-dimensional aspects, but reduce to the same linearized, one-dimensional
form.

The popularity of these schemes, and in particular the two-step version of
MacCormack (1969), is due to their second-order accuracy and simplicity,
although their behaviour around discontinuities is not fully satisfactory.

We will review first the one-dimensional, linear and non-linear versions of
the Lax—Wendroff schemes (Sections 17.2.1, 17.2.2 and 17.2.3) and then discuss
in Sections 17.2.4 and 17.2.5 the two-dimensional extensions.

17.2.1 The basic one-dimensional Lax—Wendroff scheme

The idea behind the Lax—Wendroff scheme is to stabilize the unstable central
scheme (17.1.1), while obtaining second-order accuracy in space and time. A
close look at the origin of the instability of this scheme shows that it is due to
the combination of a first-order time difference with a second-order space
discretization of the flux term.
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Indeed, developing equation (17.1.1) in a Taylor series, gives a truncation
error of the form

A
"+ au, = — ?tu,, + 0(Ax2, At?) (17.2.1)

leading to a negative numerical viscosity.

Hence, if the term At u,,/2 is added to the left-hand side, the truncation error
would be of second order in Ax and At.

The basic approach is therefore as follows: in the time series development

2 3
Ut = U+ AL, +A2 U, +A%U,,, (17.2.2)

the At? term is maintained and replaced by the space derivative term

2 2
a—g— —ﬁi— —a—(AaU) ( 6f> (17.2.3)
ot? Ox ot ox\ /) ox\ Ox
where the Jacobian 4 = 8f/0U = fy is introduced.
Equation (17.2.2) becomes

2
vt = pr— a4 A a( g>+0(At3) (17.2.4)
6 2 ox\ Ox

and is discretized at point i with second-order central differences, leading to
the one-step non-linear version of the Lax—-Wendroff scheme:

U"+l U”_-T(fH’l )+‘1"2[Au+1/2(f|+1 fn A?-1/2(f?_f?—1)]
(17.2.5a)
with
App1p=AWU4 ) (17.2.5b)
or
Ay =34+ A) (17.2.5¢)
The linearized form can be written as
wtl=ul —lo(ul, , —u)_,) +307(u),  — 2ui +uy) (17.2.6)

Equation (17.2.5a) can also be written in conservative form as the difference in
numerical fluxes f*:

U'i'+1 - U? = - 1"(f:'.; 1/2 _f?— 1/2) (17.2.7)
with
T
Str2=tisap —EAE+1/2(fi+1 -f)
Ji+ fies (17.2.8)

fi+1/z= 2
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Introducing the compact difference notations defined in Chapter 4,
0Ui=Uisyp— Uiy

uU, = Uirrp+tUioypp
' 2

17.2.9
5+Ui=U.'+1"‘Ui ( )
0"U;=U,-U,_,

the Lax—Wendroff scheme can be rewritten as follows:

Uril+l_Upi|= —Tgf?+%726+(Ai—1/25_f?) (17210)
or ‘

Ut yr = —rgf;'+é125(A;6f?) (17.2.11)

The stability conditions for the Lax-Wendroff scheme are obtained from a
linearized Von Neumann analysis, leading to the amplification matrix

G=1—ItAsin¢ — 1>A%(1 — cos ¢) (17.2.12)

The stability condition on the spectral radius of G requires the computation of
its eigenvalues A(G):

p(G)=AG),,, =1 —Iasin¢p —c*(1 —cos P) (17.2.13)
defining o by
o= At MA) pax (17.2.14)
Ax

In the complex A(G) plane, this represents an ellipse centred on the real axis at
the abscissa (1 — ¢) with a semi-axis of ¢? along the real axis and o along the
vertical axis, leading to the CFL condition (see Chapter 8). We recall here that
for the Euler equations, the CFL condition is to be applied to the highest
eigenvalue (u + ¢). The modulus of the amplification factor is given by

[p(G))> =1—46%(1 — az)sing (17.2.15)
and the phase @ is defined by
tan@=__ °SB® (17.2.16)
1 —262sin¢/2
The relative phase error
®
gp=— (17.2.17)
oo

is mostly lower than one, indicating a dominating lagging phase error. The
highest frequencies, corresponding to ¢ ==, are damped by a factor |G|, =
1 — 262, while the phase angle ¢ goes to zero if 6> < 3 and tends to nif % > ;.
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At low CFL values, for 6% <4, the phase error is the largest at the high
frequencies, since ¢, =0 for ¢ =n. Hence, this will tend to accumulate the
high-frequency errors generated at a discontinuity and oscillations will appear,
for instance for a propagating discontinuity, since the phase error indicates a
lagging computed phase.
The truncation error of the Lax—Wendroff scheme is, in the linear case,

a'2 Ax3 (42 Ax 3
Br= =t T T e T —— (1= 0uyy,
_ 2
) sz %0 — ot (17.2.18)

The equivalent equation has now a dispersive term in the right-hand side. The
dissipation of the scheme is of fourth order, since for small ¢ = k Ax, one has,
from equation (17.2.15),

2 a? 2\ 44
[p(G)|® =1 _T(l —a?)¢ (17.2.19)

showing that the Lax—Wendroff scheme is dissipative to the fourth order, in
the sense of Kreiss, for 0 <o < 1.

Non-linear variant

The non-linear formulation of the Lax—Wendroff scheme requires the evaluation
of the Jacobian 4, 125 defined by equation (17.2.5b) or (17.2.5c). However,
other definitions are possible, leading to alternative, non-linear variants of the
basic scheme (17.2.5a). Instead of evaluating analytically the Jacobian A and
calculating its values at U, +12=Ui+U;,,)/2, one can perform a direct
numerical evaluation of 4., , by the following formula (Roe, 1981; Harten,
1983b):

Jrore waken
S~ U, —U,£0 é":*,x}\,;méi. "(’_
i+ i 8 .
—_ A‘-,‘ Urn-Y,) = N ot
Ay ={Yie1 = Ui ¥ ((17“.2.20) '
A(Ui) if UI'+1 = U(

With this definition, the Lax—Wendroff scheme takes the form

Urtt= U"—_(f.n fi- 1)+112[At+1/2(U-+1 Uy) - 11/2(U" Ur-1)]
(17.2.21)

and the associated numerical flux becomes, instead of (17.2.8),

T
f?+ 1/2 =fi+ 1/2 —EA‘2+ 1/2(Ui+1 -Uy (17.2.22)
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In order to generalize the above definition of 4;,,, to non-linear systems of
equations, one can apply a decomposition in simple waves of the form (16.3.40):

0Uir1p=Uisy = Ui= Wi 1aTisisz (17.2.23)

where r* are the right eigenvectors of the Jacobian matrix 4 and ow* are the
characteristic variables.
The operator A%, ,,(U,,, — U;) is decomposed as

Atz+ 1/2(Ui+ 1~ Ui) = Xk:(a'i‘+ 1/2)25W:"+ 1/2":"+ 12 (17.2.24)

This can be realized in a most natural way by the linearization introduced by
Roe (1981) (see Section 20.5.3), where a Jacobian matrix A, is defined which
satisfies exactly the numerical relation

fi+1—fi=Ai+1/2(Ui+1—Ui) (17.2.25)
with
Aipyp= Ai+1/2(Ui’ Ui
such that
Ay p(U, Uy = A(UY) (17.2.26)

17.2.2 The two-step Lax—Wendroff schemes in one dimension

The scheme represented by equation (17.2.5a) requires the evaluation of the
Jacobian matrices A, which can be a costly operation in practical computations.
Hence a two-step procedure has been introduced by Richtmyer and Morton
(1967) that avoids the estimation of the Jacobians. This scheme, known as the
Richtmyer scheme, is at the basis of many modern two-step predictor—corrector
methods which are able to handle non-linearities in a straightforward way.

An intermediate state is introduced which can be considered as the solution
at a time ¢ = (n + 1)At, followed by a second step which brings the solution to
the final time step ¢ = (n + 1)At. Richtmyer’s scheme is then defined as

T
U:'-:xl//zz =.%(U;' + Ui — E(f?“ =)
Uit = Ui =G - D)
The first step is identical to the Lax-Friedrichs scheme (LF) applied to the
mid-point (i + ;) between times n and (n + 1), while the second step is a leapfrog
scheme, applied at (n + }) (see Figure 17.2.1).
This second step is of second-order accuracy at the points (i,n + 1), while the
first step has first-order accuracy at the points (i +3, n+ 1) at fixed Courant
number. Globally, the two-step scheme is second order in space and time at

(i,n+ 1). It is easily seen that in the linear case f = a-u, the two-step scheme
becomes identical to the single-step Lax—Wendroff scheme equation (17.2.6).

(17.227)
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(n+ DAt

Mm+1/2)at _ |

nat

i1 12 i 12 i+l

Figure 17.2.1 Computational stencil for the two-step Richtmyer variant of
the Lax—Wendroff scheme

MacCormack’s scheme

The two-step predictor—corrector scheme of MacCormack (1969) is another
version of the Lax—Wendroff discretization to which it becomes identical in the
linear case. This scheme is probably the most widely applied version of the Lax—
Wendroff schemes. Predictor values are defined at (n + 1) and point i, followed
by a corrector step, where f; = f(U,):

Ui=Ul—1(f7,,~ D

T - (17.2.28)
Urtt=3(U7 + U:)—E(fi—f.--l)

This scheme has been introduced in a linearized version in Chapter 11 in
Volume 1.

The first step is a first-order forward discretization in space, which is actually”
unstable for positive eigenvalues of A4, that is for supersonic velocities.

The second, corrector, step is a backward first-order scheme, which will be
unstable for negative characteristic speeds of propagation, that is for subsonic
flows. However, the overall combined scheme is stable and of second order due
to the cancellations of the truncation errors of each step.

MacCormack’s scheme can be written more explicitly in a predictor—corrector
sequence where the symmetry between the two steps is more apparent:

Ul —t(fie1— f7) (17.2.29a)
Ur—o(fi— fi-y) (17.2.29b)

ﬁi=
ﬁi=
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Updating gives

Urtt=40,+ U) (17.2.29¢c)
An alternative is to reverse the order of the predictor and the corrector:
Predictor: U,=U'—1(f"— ")) (17.2.30a)
Corrector: (7 —t(firy = 1) (17.2.30b)
Updating: Urtt= (U +0) (17.2.30¢)

Note that, for non-linear problems, the three versions (17.2.27), (17.2.29) and
(17.2.30) will lead to different results, although they are identical on linear
problems.

Since the predictor of the version (17.2.30) only transmits downwind
influences, an error generated at a shock discontinuity, for instance, will tend
to propagate downstream. Hence, this version will be better adapted for
discontinuities moving from right to left, while the version (17.2.29) might be
more suitable in the opposite situation. This is confirmed by Lerat and Peyret
(1975), where it is shown that this choice gives the best non-linear dissipation
properties. However, this can be strongly dependent on the way the boundary
conditions are treated and on the presence of artificial viscosity.

When the boundary conditions are applied at the downstream end of the x
domain the predictor of (17.2.30) will treat the last point in the same way as
all the others, while a numerical boundary condition will be imposed in this
point at the corrector sequence. Similar situations occur at the other end of the
interval with the predictor and corrector roles inversed.

The MacCormack schemes can also be written for the variations AU, as
follows for the version (17.2.29):

AU,= —1:6*f" (17.2.31a)
AU,=—-15"F, (17.2.31b)
AU, = U™ — U" =AU, + AU,) = --[f,+1 — "+ Fi—Fisd] (172310

where AU is the predictor variation (T — U"), AU is the corrector variation
(U — U™ and AU the global variation of the solution over one full step.

A similar form is obtained for scheme (17.2.30) by interchanging the forward
and backward differences. Equation (17.2.31c) shows that the MacCormack
schemes are in the conservation form with the numerical fluxes f 7, , , equal to

ftp= i+ 110
=3[ )+ fIUi—(f5, — /D))

=fi+1/2_'2'Ai+1/2(fi+1 — f)+0(Ar?) (17.2.32)
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It is of importance to notice here that the steady-state solution satisfies the
balance of the numerical flux f*:

f?+1/2 =f?—1/2

or from (17.2.32), for scheme (17.2.29),

fini+ Ui =t(fisi — = fi+ fLU;—y —2(fi — fi-1)]

The steady-state solution will therefore depend on the time step At, T = At/Ax.
This is considered as a drawback, since it introduces a dependence on a
non-physical parameter unless the predictor and the corrector converge
separately to the steady state. This is, however, not the case generally.

Indeed, if the predictor step would converge to zero residual, that is to U; = U",
implying f; = f:+ ., the residual of the corrector step would be proportional to
(fi+,1 — fi—,) and of the order of the truncation error. Hence, the final residual
after the two steps is

AU;= U?H —U,=—-AtR]= _T(f?+1/2 -t 1/2)

where R" is the difference of the numerical fluxes and will not necessarily
converge to machine zero but may remain at the level of the truncation error
of the discretization.

Predictor—corrector sequences using the same operator for each step will not
be subject to this problem and the residual will be able to converge to machine
zero. This in turn will lead to the same steady-state solution, independent of
the time step size At.

Example 17.2.1 MacCormack scheme for the Euler equations
with source term

The quasi-one-dimensional Euler equations for the flow in a nozzle of varying
cross-section S(x) are given by equation (16.4.1). The adaptation of the scheme
(17.2.29) to a system with a source term can be done in a straightforward way.
Denoting by Q the source term vector for the system

v of _

PR (E17.2.1)
the scheme (17.2.29) is extended as follows:
Ui=Ul=1(f1,, — fD+AQ] (E17.2.2a)
U,=U"—1o(fi—f,_,)+ At 0, (E17.2.2b)
Updating gives '
' Ut =40, + 0) (E17.2.2¢)

In the corrector step the source term is evaluated as Q = Q(U). With the
numerical flux (17.2.32) the scheme can be written as
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AU = U — U= —o(f— SR )+ %t-(Q:-' +0)  (E1723)

a

See also Problem 17.11 for a formulation of the one-step Lax—Wendroff scheme
in the presence of source terms.

Figure 17.2.2 shows a computation of the stationary transonic flow in the
diverging nozzle of Problem 16.26 with MacCormack’s scheme (17.2.29) at a
Courant number of 0.9 with 81 mesh points. Resuits for Mach number, density,
entropy and stagnation temperature variations are plotted as a function of
distance, next to the exact solution shown by a continuous line. Figure 17.2.2
also displays the streamwise evolution of the error in mass flux, expressed as
a percentage of the exact value (pu),,. The plotted quantity is [(pu)/(pu)., — 1]
as a percentage. The convergence history is also shown via the L, and max
norms of the density residuals.

As can be observed, excellent accuracy is obtained in the smooth regions,
but strong oscillations appear around the shock. The plots of entropy and
stagnation temperature are very instructive with regard to the hidden deficiencies
or qualities of a scheme, since both are derived quantities. Entropy should
remain constant everywhere with the exception of the discontinuity, while
stagnation temperature has to remain constant for stationary flows, even over
discontinuities. The errors occurring in the shock region are an indication of
the way the scheme treats discontinuous variations, and in the present case the
behaviour of the mass flux error is an additional indication of the generated
high-frequency oscillations.

This is typical of all the central second-order algorithms and requires the
introduction of some mechanism to damp the high-frequency errors generated
at discontinuities.

Figure 17.2.3 presents a computation of the unsteady shock tube flow with
the same version of MacCormack’s scheme (17.2.29) at CFL =0.95 after 35
time steps.

This test case corresponds to the data of Figure 16.6.8 and shows an expansion
shock at the original position (x = 5) of the diaphragm, where sonic conditions
would occur if the expansion fan would reach this location. The acceleration
phase through the expansion fan comes close enough to sonic velocities, as can
be seen from the Mach number distribution, to generate the expansion shock.
This is due to the lack of dissipation of the scheme at the points where the
Courant number goes to zero (see equation (17.2.13)). This equation shows
indeed that the eigenvalues of the amplification matrix are equal to one when
the eigenvalues of the Jacobian matrix vanish, that is for sonic conditions. Hence
there is no mechanism to ensure the increase in entropy required by the second
law of thermodynamics. This is confirmed by the entropy diagram in
Figure 17.2.3, showing no entropy variation over the expansion shock at x = 5.

Similar results are obtained in Figure 17.2.4 which displays the computations
for the test case of Figure 16.6.9, corresponding to an expansion fan acceleration
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to supersonic velocities. The expansion shock at x =5 is clearly seen. On the
other hand, the shock is sharply resolved but the contact discontinuity is
smeared. This is a feature common to many schemes.

The cure to the stationary shock osciilations as well as to the expansion
shock lies in the introduction of additional dissipative terms proportional to
the mesh size and of the same order or higher than the truncation error. This
will be discussed in Section 17.3.

The semi-explicit variant of Casier, Deconinck and Hirsch (1983)

From a bidiagonal implicit family of schemes developed by Casier et al. (1983),
a subclass can be extracted that can be considered as a generalization of
MacCormack’s schemes. The following represents a quasi-explicit extension of
the explicit scheme (17.2.31):

E+DAU = —v3*f1+(E—DHAU,_, (17.2.33a)
(E+DAU,= — -6 F;+(E - HAU ., (17.2.33b)
=$AU, +AU) (17.233¢)
This scheme is conditionally stable for the CFL cc;ndition
lo] <2 (17.2.34)

and reduces to (17.2.31) for { = 3.

Each §tep involves only two mesh points and is a bidiagonal system, which
is solved by a single sweep through the mesh. Details concerning the properties
of the sweeps and the related boundary conditions are given in the original
reference.

For steady calculations in particular, computations at high Courant numbers
can be performed by appropriate choices of £. Hence the number of iterations
to reach steady state can be considerably reduced, as shown in Figure 17.2.5
at similar computational cost per iteration. In addition the parameter ¢
introduces a dissipation at each step level. Figure 17.2.5 shows the results
obtained with scheme (17.2. 33) at ¢ =20, CFL = 39 for a supersonic flow in a
converging—diverging nozzle. Observe the excellent shock resolution, typical of
compact box-type schemes, to be compared with Figure 17.2.2. The comparison
of the convergence histories with MacCormack’s scheme shows the considerable
improvement obtained with the above scheme.

17.2.3 Lerat and Peyret’s Sg family of non-linear, two-step
Lax—Wendroff schemes

Lerat and Peyret (1974, 1975) made a systematic investigation of all the explicit
second-order accurate schemes in space and time, which are centrally differenced
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with respect to (i — 1),i,(i + 1) a

2.33) with CFL =39 and ¢ =20 applied to a stationary,
transonic nozzle flow

nd have a predictor—corrector two-step structure

between the time levels n and n + 1.

These schemes correspond

to an explicit discretization of the predictor

variables in (i + f) at time level (n + «) (Figure 17.2.6). The predictor step leads
to the following equations, for a forward differencing choice, by performing a
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Figure 17.2.6 Computational molecule in Lerat and Peyret’s S# schemes

Taylor expansion of U}/
o2 tz

U;‘:;: U;'+,,+ocAt(U,),+,,+ (Undisep+ -
2A 2 2At2
=Ul+ BAxX(U, )+« At(U,); + «f At Ax U, + B 2x U, + z > U,
(17.2.35)

The last three terms are the truncation error of the predictor step at (n,i).
Applying forward difference formulas for the space derivatives after replacing
U, by — f, leads to

Urti=U,=Ul+B(UL,, — U —ar(fi,, — f7) (17.2.36)

The corrector step is defined as to obtain overall second-order accuracy and
can be written as

Urtt = U"——(f. f‘i-l)—z—fx[(a Bt +@B— D +(L—a— B ,]
(17.2.37)

This family of schemes for arbitrary (a, §) are designated as the S# schemes by
Lerat and Peyret. They can be written in the alternative way by introducing

the predictor and corrector variations AU, AU with the same definitions as for
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MacCormack’s scheme (17.2.29), namely

AU = —1(f", — ™) (17.2.38a)
AU, = —t(f,—f_y) (17.2.38b)

where
fi=10)= f(U;L; (17.2.38¢)

The S? schemes take the following form:

U,=Up+ B, — Up) +aAU; (17.2.39a)
AU =UM™ —Un = 2-[(0: —BAU, +(@+ B~ 1)AU,_, + AU,]  (17.2.39b)
o

The interpretation of the predictor variation (U; — U") is clear from the Taylor
expansion (17.2.35). It represents the flux contribution to the_solution at the
predictor level at point (i + f), (n + «). The corrector variation AU is also to be
considered as a flux contribution at level (n+a) to the final correction
AU = U"t! — U”, which can be written as

=4AU;+AU,_,) —%[ﬁﬁi +(1— AU, + AU;] (17.2.40)

With regard to the conservative form of the equations, the numerical flux of
the S? scheme is

f;+1/2 _[(a_ﬂ)fl+1+(a+ﬂ_l)fl+fl

=M+ =5 B+ (=B +5 T (724D
o 200

For a = =1} one obtains exactly the Richtmyer two-step version of the Lax—
Wendroff scheme, while a = 1, § =0 gives MacCormack’s scheme (17.2.29) and
a=1, f=1 gives the variant (17.2.30). The family of schemes «, § =1, S}/2, has
been considered by McGuire and Morris (1973), while the particular case « =1,
B =% has been proposed by Rubin and Burstein (1967). Another family «, =0,
82, or B=1, S1, has also been investigated independently by Warming et al.
(1973).

All the S? schemes reduce to the Lax-Wendroff scheme in the linear case
S =a'u and have therefore identical linear properties. Hence, they represent a
family of non-linear splittings of the Lax—Wendroff scheme into two steps. Lerat
and Peyret (1975) made an investigation of the optimal properties for non-linear
problems, in particular for Burgers equation, which allows a detailed analysis
of the truncation errors, with the aim of reducing the oscillations around shock
waves generated by the insufficient dissipation of three-point, explicit, central,
second-order schemes.



250

Computing the truncation error of the S# schemes in the general non-linear
case up to the highest order (see Section 9.4, equations (9.4.21) to (9.4.24) in
Volume 1) leads to the equivalent differential equation of the scheme

U+ fi=¢er (17.2.42)

where ¢; is the truncation error.

From the definition of the numerical flux f7,, ,, the contribution to the
truncation error arising from the non-linearity contains a term proportional to
the mixed derivative of f* with respect to U; and U,,,. This is the term g,,
in equations (9.4.21) to (9.4.25), where

aZflll 1
=Tz 41— A)(B — atA),; 17.24
9230 30,.. 2 v(l =B +atA)(f —atA); (17.243)

Hence, the truncation error becomes, with o = tA4,

Ax2 o, , 3 5 5 5
eg=——| (@* =) f(x+ —Ay(B—a0)(1 = f+a0)UZ+20*A,U; | (17.2.44)
6 oOx 20

By applying the relation AU, = f,, an alternative expression for the truncation
error is

Ax? 0 3
ET=——{(T2A2 - l)fxx+_AU(ﬂU—atf)x[(l —ﬂ)U+atf]x+2t2AUf:}

6 Ox 20
(17.2.45)

where the subscripts indicate derivatives, in particular A, is the derivative of
the Jacobian with respect to U, A, = fyy-

The first term is the only one in the linear case A, =0, and is of a dispersive
nature as discussed earlier. The second term is proportional to the second
derivative f,, and, hence, if the coefficient is appropriately chosen, could allow
a non-linear dissipation to be introduced in order to damp the oscillations
created at shock or contact discontinuities. However, since the coefficient of
this term is proportional to f,, the scheme can be made dissipative for
compression shocks but would then be antidissipative for expansion waves. A
detailed analysis, based on Burgers equation, shows that the choice

= E
;_ 1+ (17.2.46)
=2

gives a maximum dissipation with compression shocks and keeps the
antidissipation to a minimum with rarefaction waves (Lerat and Peyret, 1975).

It is to be noted that the effect of the antidissipative term is partly counter-
balanced by a higher-order term proportional to Ax*(9*f/dx*) with a negative
coefficient. The optimum values above are confirmed by numerical experiments
on Euler equations, to minimize the non-linear oscillations at discontinuities.
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17.2.4 One-step Lax—Wendroff schemes in two dimensions

The one-step Lax—Wendroff scheme for the multi-dimensional Euler equations
is obtained from equation (17.2.2), following the same procedure as in one
dimension. In two dimensions, the equation U, + f, +g¢,=0 leads to the
following estimation of U ,:

a,
Up=—(—fi—
at( fx—9y)

- _E<A5_U>_2<B‘72)
dx\ ot dy\ at

=5‘3—[A(fx+gy)1 + 2 1B(f, +9,1
x dy

a( of 0 6g> 6( 6g> 6< 0f>
= (A= )+ B2 )+—(aZ )+ | B 17.2.47
6x< 6x) 6y( dy ox\ dy +6y ox ( )

The mixed derivatives that appear in the last two terms are somewhat
cumbersome, so much so that A and B do not commute.

The direct generalization of equation (17.2.11), with central symmetric
difference formulas for the mixed derivatives, leads to the following scheme,
written in difference operators notation:

- < 2 1
U?j+ = U?j - Txfsxf?j - 1"y‘syg?j + Ex‘sx(Aijéxfii) + Ey‘sy(Bif‘sygU)

T,T, = = = =
+ 2 ! [6x(Aij6ygij) + 5y(Bij5xfij)] (17.2.48)
where
T, = ﬂ T,= ﬂ (17.2.49)
Ax Ay

and the central difference operators §, and 5, are defined by equation
(17.1.31), while 8,, 8, are the operators in the x and y directions defined as in
equation (17.2.9).

This scheme uses all of the nine points surrounding (ij), and various other
variants can be defined by treating the mixed derivative terms differently (see
Problem 17.4).

The stability of the two-dimensional Lax—Wendroff scheme (17.2.48) is
analysed by the Von Neumann method. The following amplification matrix is
obtained for constant Jacobians A4, B and linearized fluxes f = Au,g = Bu:

G=1—I(t,Asin ¢, +1,Bsin¢,) — 124%(1 —cos ¢,) — 12 f*(1 — cos §,)

- EZEX(AB + BA)sin g, sin ¢, (17.2.50)
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For real, symmetric and commuting matrices A, B, Turkel (1977) has shown
that the following condition is necessary and sufficient for the Von Neumann
stability: ‘

|2ep(A)*? + |7,p(B)** < 1 (17.2.51)

Since the matrices 4 and B do not commute, this condition is only sufficient
(Turkel, 1977). Weaker conditions had been given originally by Lax and
Wendroff (1964) as

tpd)<—=  and 7,0(B) < 1 (17.2.52)
V8 V8

and an improvement found by Tadmor is reported by Turkel (1977) as
[.p(4)]* + [z.p(B))* <% (17.2.53)

All of the above sufficient relations are valid for real, symmetric matrices 4
and B are compared in Figure 17.2.7, in a diagram (g, 0,)

g, =1,p(A) o,=1,p(B) (17.2.54)

It is worth mentioning that for a scalar equation with Ax =Ay, a numerical
study of the amplification factor (17.2.50) performed by Burstein (1967) has led

-1 ~0.5

v

a - condition (17.2.51)
b - condition (17.2.52)
¢ - condition (17.2.53)

Figure 17.2.7 Comparison of different sufficient stability conditions for the
one-step Lax—Wendroff scheme in two dimensions
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to the stability condition
(|7} + ¢) < 0.5406

which is close to the condition (17.2.53).

Although interesting conceptually, the one-step Lax—Wendroff schemes are
rarely applied since they require many Jacobian matrices evaluations; therefore
one favours, in practice, extensions of the two-step methods.

Reinterpretation of the one-step Lax—Wendroff scheme

The one-step Lax—Wendroff schemes have recently gained a renewed interest
for practical computations in the framework of multi-grid schemes (Ni, 1982;
Hall, 1985; see also Koeck, 1985). Ni (1982) reformulated the Taylor expansion
in time (17.2.2) as a ‘distribution’ formula for the finite variation
AU = U"*! — U” at a mesh point.

The guiding idea is obtained from rewriting the Lax—Wendroff algorithm in
the form (17.2.7), (17.2.8) as a two-step procedure:

Kﬁt+1/2= —t(fie = 1D (17.2.55)
f?+1/2=fi+1/2+%A?+1/2wi+l/2 (17.2.56)
AU"= _t(f?‘+1/2_f?—1/2) (17.2.57)

The variation AU} = U?*! — U7 from time n to time level n+ 1 is considered
to result from contributions of the flux imbalance over the cells (i + 1,i) and
(i,i — 1) (Figure 17.2.8). The flux imbalance over cell (i + 1/2) is (f,,, — f;) and
contributes to the overall variation AU} by an amount

AU, p= =T =)= —16fT01p2 (17.2.58)

4

t

s, "y
TAf
oy — —>
»
i-l i i+l

Figure 17.2.8 Distribution of flux imbalances in the distribution interpretation
of the one-step Lax—Wendroff scheme
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Similarly, the cell (i — 1/2) contributes with
AU, ,,=—tf1—f1_) = =811 (17.2.59)

If no other contributions to AU, are taken into account, the formula
1 — — T
AU} = E(AU,.H,2 +AU,_,,,)=— E(f?“ —f;'_l)’ (17.2.60)

is the unstable central difference scheme.
The contributions from the second time derivative U, stabilizes the central
scheme while maintaining second-order accuracy. As seen from equation (17.2.5),
the stabilizing terms can be viewed as arising from a contribution
— - af —
Afi—‘llngi-I/Z'AUi—1/2= PYT) 'AUi—l/z (17.2.61)
U Ji-1p2
from cell (i — 1/2) and
— of
f|+1/2 i+1/2 i+1/2 (aU

from cell (i + 1/2).
The total contribution from cell (i—1/2) to Ur*! is defined in the Lax-
Wendroff scheme as

) ‘AUy4 112 (17.2.62)
i+1/2

AUY ,=3AU,_ , +1Af; ;) (17.2.63)
and the contribution from the downstream cell (i + 1/2) is
AU:+1/2E%(—A_U1'+1/2_TA_fiH/z) (17.2.64)
The Lax—Wendroff scheme can then be written as
AUiEU;‘“—U:.'=(AU[H/2+AU,.+_1/2) (17.2.65)

Within each cell, for instance cell (i + 1/2), the first variation A_ﬁH 12 E equally

distributed to the points i and i + 1, while the second contribution Af;, , , is
added to the downstream point and subtracted from the upstream point; that
is one has

AUi++1/2 =%(Ei+1/2+tA_ji+ 1/2) (17.2.66)
such that
AUI_+1/2+AU|'++1/2=AU1+1/2 (17267)

Although the resultant scheme is central, each separate contribution has an
upwind character. This can best be seen for a scalar (characteristic) equation
where A or its eigenvalue a is taken as positive.

In this case, with ¢ =1a >0,

AU}, =31 +0)AU,_,, (17.2.68)
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and
AUl_+ 1/2 — 2(1 —G)AUH-I/Z (17269)

showing that the upstream cell provides a larger correction to AU, than the
downstream cell. This is in agreement with the physical properties of wave
propagations. The central properties of the Lax—Wendroff scheme result from
the equal distribution of Af contained in equation (17.2.65).

The interpretation of Lax—Wendroff scheme as distribution formulas of
corrections is used by Ni (1982) and Hali (1985) in order to define multi-grid
strategies, whereby the above formulas are applied on a succession of coarser
meshes.

It is interesting to observe at this point that MacCormack’s scheme (17.2.29)
can be interpreted as a distribution scheme whereby

AU, 1/2 =%Kijt+ 1/2 (17.2.70)
and o
AUI.__1/2=%AUi_”2 (17.2.11)

where the tilde indicates that the variation in the upstream cell (i —1/2) is
considered to have been already affected by the downstream cell variation; that is

AUL ) =$AU,_ (Ul + AU, |, U + AU ) =380, (17272)
with
AU, = AU; 12U UL Y) (17.2.73)

The alternative version (17.2.30) is obtained by considering the downstream cell
variations to be affected by the prior, upstream corrections.

Various ways can be defined for the computation of the flux corrections
Afis1- A straightforward way, avoiding the calculation of the Jacobian
matrices, consists in the following equations:

pu A(pu)
Af=Alpu®>+p| =|ulA(pu)+pulAu+Ap (17.2.74)
pu+1 HA(pu)+ puAH
where A represents the appropriate finite difference and
Ap
AU = | A(py) (17.2.75)
A(pE)

is used to derive the values of Ap, Au and AH from their relations to the
conservative variables seen in Chapter 16.

Two-dimensional distribution formulas

The extension of the above interpretation to two dimensions has the additional
advantage that the mixed derivative terms of equation (17.2.48) do not appear
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Figure 17.2.9 Two-dimensional distribution interpretation of the Lax—
Wendroff one-step schemes

explicitly in the calculation. Indeed, referring to Figure 17.2.9, four cells will
contribute to the variation AU}, = U7 — Uj,;.

Considering cell (i +1/2,j+ 1/2), the variations associated to the first
derivative terms of equation (17.2.48) lead to a contribution

AUH y2,4+12= 1""(fi+ 1L,j+1/2 7 f-'.j+ 1/2) - ty(9i+ 12.j+1 i+ 1/2,,‘) (17.2.76)

where

fi,j+1/2=%(fi,j+fi_j+1) (17.2.77)

and similar formulas for the other flux components at mid-side points.
For an arbitrary mesh, the contribution AU,, , ;4,,, Will be defined by a
finite volume discretization with a control volume ABCD having the mesh
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points at its corners:

— At

AU iaein= =3 Y (fAy—gAx) (17.2.78)

i+1/2,j+1/2 ABCD

where S, 1/ ;44
sides of the cell.
This variation is distributed equally to the four corners of the cell with a
weight coefficient of £ and when these contributions from the four cells common
to point (i, j) are added to form AUj;, one obtains again the central unstable
scheme.
The stabilizing terms arising from the U,, contributions are evaluated from

the second line of equation (17.2.47). With

, is the area of ABCD and the summation extends to the four

Afivizgerz =Aiv12.5+ 128V 12,5012 (17.2.79)
Agi+ 1/2,j+1/2 = Bi+ 1/2,j+ l/ZAUi+ 1/2,j+1/2

the following distributions occur within the cell (i + 1/2,j + 1/2) towards the
four corners:

A Uit+jl:/2,j+ 2= %(E x TxA_f * TyA_g)H 1/2,j+1/2 (17.2.80)
with obvious definitions of the four combinations of signs. For instance

AUﬁ)l/z,ﬁ 12 = AUit:/z.ﬁ 1/2 (17.2.81)
AU?-?I/Z.]*- 125 AUI++_1/2,j+ 1/2
Finally, the distribution form of the Lax—Wendroff scheme can be written as
AUU = U?f P U?j = AUi_+_1/2,j+ 12t AU1_+’;/2.1— 1/2
+AU:'_+1/“_”2+AU1.+_';/2,1.+1/2 (17.2.82)

For unequal mesh sizes, the above formula can be replaced by volume-weighted
averages.

For more details on the multi-grid application we refer the reader to the
above-mentioned references for two-dimensional applications and to the
extension to three dimensions developed by Koeck (1985).

Figure 17.2.10, from Ni (1982), is an example of a transonic flow in a channel
with a circular arc obstacle on the lower wall. The height of the channel is
equal to the chord of the circular arc, and its thickness to chord ratio is
10 per cent.

For an incident Mach number of M, = 0.675, a supersonic region terminated
by a normal shock is obtained. Behind the non-uniform shock, the flow is
known to become rotational, and this can be seen from the way the iso-mach
lines intersect the flat surfaces. Upstream of the circular arc, the flow is
irrotational and the iso-mach lines are perpendicular to the surface, which is
not the case any-longer in the downstream part (see Problem 17.12).

The stagnation pressure contours (Figure 17.2.10(c)) show the generated
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(a) Mach number distribution

(b) Iso-mach lines

AP =10 - Py/Py_

&0.01 e
.0.03—=

¥

(c) Total pressure loss contours
Transonic solution for flow in the channel at M _ =0.675.

Figure 17.2.10 Transonic flow in a channel with a circular arc obstacle
on the lower wall. (From Ni, 1982)

entropy at the shock being convected further downstream. The convergehce
history in Figure 17.2.11 shows the improvement achieved by the multi-grid
strategy using four successive grids.

17.2.5 Two-step Lax—Wendroff schemes in two dimensions

As with one-dimensional problems, the one-step Lax—Wendroff schemes also
suffer from the difficulty of requiring calculations of Jacobian matrices.
This can be avoided by the two-step versions, such as the Richtmyer and
MacCormack schemes, which are generalized by the two-dimensional versions
of the S# schemes of Lerat and Peyret.

The two-step Richtmyer scheme

Equation (17.2.27) can be generalized to two (or three) dimensions in a straight-
forward way by applying a first-step Lax—Friedrichs scheme (17.1.21), followed
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Convergence history for transonic flow in the channel.

Figure 17.2.11 Convergence history for the transonic
channel flow of Figure 17.2.10. (From Ni, 1982)

by a leapfrog step. One obtains, in two dimensions,

1 n n
U,i'j+1/2 = Z(U?+1,j + U:—l.j + Ui,j+1 + Ui.j—l)
v

TJ‘ n n T n n
—E(fﬁl.j— 1—1,1)_5"(91,,41 —gi,j—l) (17.2.83)

ULt = Uy — (112 = 1) — el e - gl
This scheme involves the points (i + 1,j) and (i, j + 1) at two different time levels,
since the first step is written at integer mesh points.
The more direct generalization of equation (17.2.27) has also been considered
as follows (Zwas, 1973):
| T
U"‘:ll//zz.ﬁ 125 Z(Ui+ 1,j+1 + U’il+ 1,j + U?,j+ 1t U?,j) - f(fﬁk 1,j+1/2° f;',,-+ 1/2)

T
- E"(g;'+ 12,41 gi+ 1/2,1) (17.2.84)

+1_ _ +1/2 _ a1z y +12 _ oa+1)2
Ui; =Uj; Tx(f;l+1/2.j f;'—llz,j) fy(%+’1/2 g?.j—/x/z)
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These two versions are equivalent but not identical. In the version (17.2.84),
the half-integer mesh point values can be estimated as

\ Ul e+ US
fi+1_j+1/2=f( i+1, j+12 i+1, j)

f::ll//Zz.j =f(U?:11/22"+ 1/2; Ul+l/2 i= 1/2) (17285)

The alternative option
1/2 +1/2 _ 1 +1/2 +1/2
f?:u/z,j _f'(l—l/z.j = i(f'i'+ 1//2 j+1/2 + f:'+ 1/2,j—- 1/2)
1/2
z(f"+1/2 j+1/2 + fi—1/2,j—l/2) (17.2.86)

is a third-order estimation.
The stability conditions of these two versions are also different. Applying a
Von Neumann analysis, scheme (17.2.83) gives, in the linearized case,
G=1-I(t,Asin ¢, + 7,Bsin ¢,)(cos ¢, + cos ¢p,) — 2, Asin ¢, + 7,Bsin ¢,)?
(17.2.87)
When the scheme (17.2.83) is reduced to a single equation, it involves points
(i +2,j) and (i,j + 2) shown in Figure 17.2.12.

The necessary and sufficient stability property can be found in this case
(Richtmyer and Morton, 1967), and for Ax = Ay can be written as

A
2L (I7l+0)< —1_ (17.2.88)
Ax V2

which is a CFL condition with the limit 1 /JE.

j*l @ @ j*l 4 ; ¥ -
12
i — - © J + + + j
i1 & &— i1 T T T r2
i [ B
2 il i el 42 irl i i+l
i-1/2 i+1/2
(a) Computational stencil (b) Computational stencil
for scheme (17.2.83) for scheme (17.2.84)

Figure 17.2.12 Computational moiecules for schemes (17.2.83) and (17.2.84)
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The variant (17.2.84) is more compact and involves the nine points indicated
in Figure 17.2.12(b), leading to the amplification matrix

G=1- %[rxA sin ¢,(1 + cos ¢,) + 7,Bsin ¢,(1 + cos ¢,)]
<r Asmd; cosﬁ+t Bcos&sm ¢’) (17.2.89)

Here, also, a necessary and sufficient condition for stability can be found (Zwas,
1973; Turkel, 1977), for Ax=Ay:

AA—’(m +o)<1 (17.2.90)
X

which is a CFL condition limited by one. Hence this version of the Richtmyer

scheme allows a maximum time step larger by a factor \/5 compared to the
scheme (17.2.83).

The two-step MacCormack scheme

This scheme is the most popular two-step variant of the explicit Lax-Wendroff
family as it involves only seven points instead of nine.

Since MacCormack’s scheme combines forward and backward differences in
separate predictor and corrector steps, four different schemes can be defined in
two dimensions, through various combinations of the one-sided differences on
the flux components f and g. For instance, in the line of scheme (17.2.29), one
would write the following version of MacCormack’s scheme:

~ U = U x(f:l+ 1,j f:'_,) - Ty(g?,j+1 - g:ll)
UU n, x(fu f;—],,j)_ry(g_ij_g—i,j-‘) (17.2.91)
U:"j+ ! Z(Uu + U”)

Figure 17.2.13 shows the computational molecule associated to scheme (17.2.91)
where the points marked P indicate the values used at the predictor level.
The amplification matrix of the two-dimensional MacCormack scheme can
be derived for the version (17.2.91) by defining G as U= GU",G as U=GU"
and G = (G + G)/2, leading to
G=1—1,AE"* - )r,BEe* —1)

G=1-G[t,A(1 —e 1<)+ 1,B(1 —e %]

G=1-I(1,Asin ¢, +1,Bsin $,) (17.2.92)
- [(rf‘Az(l —cos ¢,) + 12 B%(1 —cos ¢,)
+ 47,7,ABsin == ¢ ¢” ¢‘ ¢’]
2 2

written for commuting matrices A4, B.
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Forward-forward version Forward-backward version

ng j*l

-1 j1

il i i+1 il i i+1

P : Predictor points
C : Corrector points

Figure 17.2.13 Computational molecule for MacCormack’s scheme

This expression is quite complicated and no analytically derived stability
condition is known. An experimentally derived necessary condition for stability
is obtained by MacCormack and Paullay (1972) as a CFL condition, indicating
that the physical domain of dependence should be contained in the numerical
one:

(Tl AA) | oy + Tyl AB) | per) < 1 (17.2.93)
or

Ats[ll(A)l.,..,+I/l(B)Im.,]" |
Ax Ay

This condition is obtained from the stability condition p(G)< 1 for ¢, = ¢, = 7.
See also Tong (1987) for an independent confirmation through a numerical
evaluation of the amplification factor G. In Cartesian coordinates,
|A(A)| .o =4l + ¢ and |A(B)|,., =|v|+c, where u and v are the x and y
components of the velocity vector v'. Hence, one obtains for the Euler equations

< 1 - AxAy
T (lul+c)/Ax +(Iv] +c)/Ay " |u]Ay + [v]Ax + c/Ax? + Ay

where the right-hand side is the current form, as generally found in the literature.
A backward-backward predictor version is described by the scheme

l;j_ij =Uj;— Tx({?j - ?—_1,1) — 7,95 —gi.j-1)
U= U?i_ Tx(zfi+ 1= fi) = Bl — 81 (17.2.95)
U?J+1 =%(Ulj+ Ul])

(17.2.94)
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A comparative study of the four variants has led Lerat and Sides (1977) to the
conclusion that the best results are obtained in steady flows when the corrector
step is upwind with regard to the flow direction, in concordance with the one-
dimensional observations. A dynamic switch between the four variants as a
function of the flow direction is applied by Lerat and Sides (1977), but most of
the applications use a fixed version. In this case, it is recommended to cycle
between the four possibilities during a computation, in order to avoid a bias
provided by an eventual accumulation of errors.

Finite volume formulation of MacCormack’s scheme

Due to its importance, we present here a finite volume formulation of
MacCormack’s scheme on an arbitrary mesh, which was actually one of the
first applications of the finite volume method (see Chapter 6 in Volume 1).

The current approach consists of a discretization of both predictor and
corrector steps on the same control volume ABCD with mesh points (i, j) at its
centre (Figure 17.2.14). The two steps are distinguished by the way the fluxes
are estimated. In the predictor forward—forward version, for instance, the flux
along the downstream side BC is defined as being equal to the flux value at
point Q (i + 1, j) and along the side CD to the value at point R(, j + S). In the
corrector step, the upstream flux values are selecteg:

Designating the cell side normals by Sie1 2 and S, ,, the predictor step is
defined by

— n At — — —_ — - -

Uijj= UU—Q—U(FHl,j'Sn 2t Fijer St FiySiyp+ th'sj-l/z)

(17.2.96)
where Q,; is the area of the cell.

j+1

J1

i-]

i

i+1

Figure 17.2.14 Control volume ABCD for finite
volume discretization of MacCormack’s scheme
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The corrector step is

6"1: U;'j—‘%(ﬁ'”@i“/z + Fij'§j+1/2 +I_~“"._1-§,._,,2 + Fj_1-§j_1,2)
’ (17.2.97)
and
Uit =50+ U (17.2.98)

The flux contributions are evaluated, for instance, as follows:

Sivrz=ierzge12— Vivyzg-12) 1
_(xi+1/2.j+‘l/2_xi+1/2,j-1/2)1}’ (17.2.99)
=AYl Axi 1y

Fi+l,jsi+1/2 =fis l,jAyH- 172~ 9+ l,iji+ 12

Computational note With the definitions of the flux components f and g in
conservative variables, the above contributions can be calculated as follows,
where U is the vector of the conservative variables:

p(ulAy—Ax) 0
Ay —vAx)+pA A
_ | by oA+ PAY | san+p | 2| 072100
pv(uAy —vAx)—pAx —Ax

pHuAy—vAx) 0

L)

F-

The scalar quantity

g=ulAy—vAx=7-§ (17.2.101)
is the volume flow rate through the cell side S. Hence, it is computationally
advantageous and recommended to follow this approach, defining

0

— Ay
1018412 = Uisn @is 1, T Piv g —Ax

el

(17.2.102)

0

Other variants can be defined by selecting different control volumes for
predictor and corrector steps and defining the points at which the fluxes are
estimated in an appropriate way; see, for instance, Thompkins et al. (1983) and
Problem 17.24.

A three-dimensional finite volume formulation can be found in Rizzi and
Inouye (1973).

A necessary CFL condition for stability is expressed by the condition that
the numerical domain of dependence should contain all of the physical one.
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This can be expressed by the general form

At<min<_‘ s @ — — ) (17.2.103)
@ IUUSI—1/2I+IUUSJ-1/2|+CU‘\/|S4+1/2|2+'SH1/2|2

The operator splitting approach to multi-dimensional explicit schemes

An alternative to the multi-dimensional schemes of the previous section consists
in splitting the discretized space operators into products of one-dimensional
operators. This is also known as the fractional step method, advocated by
Yanenko (1971).

A similar, but not identical, concept has been introduced for the resolution
of multi-dimensional implicit schemes in Chapter 11 in Volume 1, known as
ADI factorization. In the present context, the operator splitting has to be handled
with more care than the ADI factorization, since the splitting acts directly on
the order of accuracy of the scheme.

As a result it is expected that the split formulation will lead to improved
stability properties or to reduced computational work. For instance, the two-
dimensional Lax—Wendroff scheme could be replaced by a product of one-
dimensional schemes as follows. Defining the Lax—Wendroff discretization
operator for a one-dimensional equation, following equation (17.2.10),

2
" n n S Ty - n
Uij+1 = L(xLW)UiJ' = UU - txéxfij + ?6:(14.-_1/2'.}6“ fU)
- 72 .
- [1 — T A+ 75,,(,4,.2,.5,‘)] U, (17.2.104)

one can define a two-dimensional Lax—Wendroff scheme as
U;'j" 1 L;'“W)L‘YLW’U;‘J. (17.2.105)

The Von Neumann stability analysis for linear equations is readily obtained as '
the product of the one-dimensional amplification matrices (17.2.12):

G=G.G, (17.2.106)

where G, and G, are the expressions (17.2.12) for the x and y variables
respectively. Hence, the stability conditions will be

o<1 and loy,| <1 (17.2.107)

These conditions are more favourable than those represented in Figure 17.2.7.
Working out the product LE™ LEW), it is seen that third- and fourth-order
terms in 13 and t* appear in the development that are not present in the original
two-dimensional form (17.2.48) (see Problem 17.15). If the matrices A4, B do not
commute, all the terms of (17.2.48) cannot be obtained by the product L L,
and the second-order accuracy might be lost. Therefore, the symmetric splitting

Ut =4(L,L, + L,L,)UY (17.2.108)
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will reproduce all the 7,7, terms, plus additional terms, but the resulting scheme
will remain second order in At and Ax.

Split MacCormack scheme

The two-dimensional MacCormack scheme can be formulated in split form by
products of one-dimensional operators. The operator LM (At/2) is defined by
the scheme (17.2.29) as

" At\, .
U.-,-“”EL‘M’( 5 )Ui,- (17.2.109)
where L™ results from the predictor corrector sequence
U=Ul— (11— 1) (17.2.110)
U?jﬂlz ‘(U + UU) (f; fic) (17.2.111)

The operator L‘yM’(At) is defined in a similar way by interchanging the roles of
i and j as well as f and g. Hence, the scheme

Untt = L‘M’<AZI>L;“’<A;>U" (17.2112)

is an alternative to MacCormack’s scheme (17.2.91). The linear stability analysis
is identical to the one just described, since each factor LY, LM has the
amplification matrix of the corresponding one-dimensional Lax Wendroff
scheme. Hence, one also obtains the conditions (17.2.107).

Here, again, it is seen by developing the operator product L¥-L} that an
order of accuracy is lost when the Jacobian matrices 4, B do not commute.

In order to maintain the second order of accuracy, it is necessary to define
symmetric sequences of split operators (see Strang, 1976). The following
alternatives are valid:

(1) Alternate the sequences LY L™ and L™ LM; a 2At cycle is defined whereby

Ut = L"‘”(At L‘“’(At> U,
” 2) \2

Uy = LM(A’)L(M)(At) Urr (17.2.113)
2 )

L‘M’ At Lo At L™ At L‘M’ At
2 2 2 2
(2) Distribute the time interval in fractions through the scheme

Uupr2=LM (i ) LM (A)LM (Az ) Ut (17.2.114)
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or
At At
Uytt= L;M)<?>L;M)(At)L;M’ <?) Uj; (17.2.115)
advancing the solution by two time steps 2At.
(3) A still more general splitting sequence is

. At\ ¥ LAY A
Uii”:l:L;M)(ZV_)] Lg‘M)I:L;’M)<2—N):| Uy, (17.2.116)

In these sequences the one-dimensional operators have different time steps.
For unequal mesh sizes Ax # Ay, larger time steps can be chosen for the direction
with the larger mesh size. If Ay > Ax, one can allow L,(At,) with the CFL
limitation At, < Ay/p(B) and combine in a symmetric set with L (At,) operators,
such that the sum of all At equals the interval AT over which the solution is
advanced in time.

The two-dimensional version of the S® schemes

The extension of the S# schemes to two-dimensional problems has been
investigated by Lerat (1981) in a systematic analysis of predictor—corrector
schemes, which reduce in the linear case to the two-dimensional Lax—Wendroff
schemes (see also Lerat and Sides, 1982).

A first extension with one predictor in unsplit form did not appear to be
satisfactory. Consequently, Lerat considered schemes with two predictors and
asingle corrector, in an approach which resembles the operator splitting concept.
However, the predictors are not pure one-dimensional operators.

Requiring the schemes to be restricted to nine points around (i, j) to be second-
order accurate in space and time leads to a family with four parameters «,, o,
By, B, which can be extracted from the original 67 parameters and defined as
follows:

Uyj=Ugy+ By(Us, 1 )= U — o 0elf 34y = f1)
—al%(g7+1,j+1 + 901 G111 —90j-1) (17.2.117)
Uy=Ul+ By(Usyy — Ul — 037,(00 4, — 0
~a X Tangor + Sy = fimrger = fi1) (17.2.118)
Ut = U=t e — S 12.) — 5@ 0 12— 9F5-112) (17.2.119)
o= 2%“[(0:, BT+ @+ By — DfY+ T

1 . (17.2.120)
g:j+ 125 E[(az - ﬂz)g?,H Ll + By — 1)9.',' + gl,j]
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The numerical flux 7, , ;is defined as in equation (17.2.41) with a =, and
B = B, while g}, ,,, is obtained from a similar expression ‘with j taking the role
of i, with @ = a,, B = B, and f replaced by g. In addition, f;; is defined by f(U,;)
inf¥,),,; and by g;;=g(U;;) in 9:j+ 1/2°

It can be observed that the predictor steps are close to the one-dimensional
predictors (17.2.38), except for the last terms, which represent a two-dimensional
contribution. Hence these schemes are a straightforward extension of the
one-dimensional S schemes.

This family of predictor—corrector schemes contains several known schemes
as a particular case. For a; = a, = §, = , =1 one obtains a scheme proposed
earlier by Thommen (1966) for the Navier—Stokes equations and applied by
Singleton (1968) and Magnus and Yoshihara (1975) to the Euler equations.

The choice a, =a,=1, B, =B, =3 corresponds to a scheme proposed by
Palumbo and Rubin (1972).

It is to be noticed, however, that the two-dimensionali MacCormack schemes
are not included in the above four-parameter family, in contrast to the
one-dimensional case where the choice a=1, f=0 or a=1, f=1 reduce to

-
t
<- 9 g
f

o

t t
4

<

-11 Cuz-1e083% 'COs+0e0422 - -14 't'C..,:o‘.ngs.‘.’ {lzepailals
(a) MacCormack scheme (b) Optimal S$(a,B) scheme

Figure 17.2.15 Pressure distribution on an RAE 2822 airfoil at M = 0.75 and 3° incidence.
(From Lerat and Sides, 1982)
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the MacCormack schemes. Observe also that for f, = f, =1, the schemes are
symmetric around i+ 1 and j + 1.

All the schemes reduce to the Lax—Wendroff form (17.2.48) for constant
matrices A and B, independently of the a,, «,, B,, B, coefficients. They represent
therefore a family of non-linear multi-step variants of the Lax—Wendroff scheme.

In calculating the equivalent differential equations, the coefficients of Ax?
and Ay? are identical to the corresponding one-dimensional terms (17.2.45) and
hence an optimal scheme selection can be made, which would, as in the
one-dimensional $# schemes, have an optimal dissipation for the compression
waves due to the non-linear contributions in the truncation error, while keeping
to a minimum the antidissipation of the expansion waves. This can then be
obtained for the same set of values; that is

“1=°‘2=1+\/§ Bi=B.=3%
Figure 17.2.15 shows a comparison between MacCormack’s scheme and the

above optimal scheme for a transonic airfoil computation, from Lerat and Sides
(1982). Both calculations have been performed on the same mesh of 224 x 29
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(a) MacCormack scheme (b) Optimal S(a, B) scheme

Figure 17.2.16 Entropy distribution on an RAE 2822 airfoil at M, = 0.75 and 3° incidence.
(From Lerat and Sides, 1982)
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cells, with the same boundary conditions and additional artificial viscosity (see
Section 1/7.3 for more details on this last aspect).

The calculations performed on an RAE 2822 airfoil at M, =0.75 and 3°
incidence show the postshock oscillations with MacCormack’s method on the
pressure distributions (Figure 17.2.15(a)), compared to the results of the optimal
scheme (Figure 17.2.15(b)). The horizontal bars indicate the Rankine—Hugoniot
jump, which appears somewhat inaccurate with the MacCormack computation.
The plot of the surface entropy distribution on Figure 17.2.16 gives a better
view of the difference in behaviour of the two schemes.

It can be seen that the strong expansion at the leading edge produces a large
entropy rise with the MacCormack scheme—about four times as large as with
the optimal scheme.

The plotted quantity = = (p/p”)(po/p}) — 1 is a measure of the entropy errors,
since the entropy should remain zero in this isentropic flow, except at the shock,

2

‘Internal’ boundary conditions

: \

.
QREERESE

~~

Actual stage Approximation Approximation
N, =31, N; =53 Ky =3.K;=5 K= 1,K3 =2

Figure 17.2.17 Geometry and mesh for the stator—rotor
interaction in the two-dimensional section of a turbine
stage. (From Fourmaux and Le Meur, 1987)
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where the Rankine-Hugoniot conservation laws impose an entropy
discontinuity. Hence any deviation from this behaviour indicates a generation
of numerical (unwanted) viscosity.

Observe also that the entropy has a maximum inside the numerical shock
structure. A similar property is actually obtained when physical shock structures
are analysed on the basis of the Navier-Stokes equations; see, for example,
Zeldovich and Rainer (1967).

Figure 17.2.18 Instantaneous pressure field for the stator—rotor
interaction in the two-dimensional section of a turbine stage. (From
Fourmaux and Le Meur, 1987)
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Example 17.2.2 Unsteady flow in a two-dimensional section of
a turbine stage

The interaction between the rotor and stator in turbomachines creates an
unsteady flow component which can have a non-negligible effect on performance.
Calculations of this interaction on a domain composed of three stator and five
rotor blades have been performed at ONERA with MacCormack’s scheme
(Fourmaux and Le Meur, 1987). Figure 17.2.17 displays the mesh between two
consecutive blades and several of the full-stage arrangements considered. The
total mesh contains 40000 points and characteristic relations are applied as
boundary conditions. A typical instantaneous pressure field is shown in
Figure 17.2.18 for steady inflow conditions in front of the stator demonstrating
the unsteady flow pattern.

17.3 THE CONCEPT OF ARTIFICIAL DISSIPATION OR
ARTIFICIAL VISCOSITY

All the second-order, three-point central schemes of the Lax—Wendroff family
generate oscillations around sharp discontinuities, as shown in Figures 17.2.2
to 17.2.4. Similar effects were also observed with the linear convection equation
in Chapters 8 and 9 in Volume 1.

First-order schemes, on the other hand, have truncation errors proportional
to a second derivative which acts as an added numerical viscosity (see equation
(17.1.7)). Therefore, these schemes will damp the high-frequency components
and smooth out strong gradients.

An alternative explanation for the oscillatory behaviour of the shock
transition with Lax—Wendroff schemes is given by Lax and Wendroff (1960) in
their original paper. This remarkable paper contains many basic ideas and
considerations which are still highly up to date and we strongly recommend a
careful reading of this work.

A stationary solution, in particular a stationary discontinuity, will satisfy the
asymptotic part of the scheme (17.2.6), that is the steady state &, will satisfy in
the linearized case

s = ) + 07— 2t o) = O (17.3.1)

When this solution is approached, for uf*! =u{, the spatial error & =u; — 4
satisfies the same equation

G
_5(8i+1—si—1)+%02(8i+1_26i+8i—1)=0 (17.32)

Following the normal mode analysis of Section 10.5 in Volume 1, an exact
solution of the form ¢; = ' can be found, leading to

1+a
K=

(17.3.3)
o—1
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Since the stability limit is |¢| < 1, k will always be negative. Hence at consecutive
points i, i+ 1, the error ¢ =«' will change sign, leading to an oscillatory
behaviour of the numerical solution. This behaviour represents an ‘odd-even’
point error of wavelength 2Ax, that is of high frequency. Since G(n) = 1 — 202,
these oscillations will not be damped when o ~ 0, that is when a sonic point is
encountered.

For the Lax—Friedrichs first-order scheme, x is always positive, since
k=(1+ 0)/(1 — o) in this case.

In order to remove the anavoidable high-frequency oscillations around
discontinuities in second-order central schemes, Von Neumann and Richtmyer
(1950) introduced the concept of artificial viscosity of artificial dissipation. These
additional terms should simulate the effects of the physical viscosity, on the
scale of the mesh, locally around the discontinuities and be negligible, that is
of an order equal or higher than the truncation error, in smooth regions.
Additional dissipation is also required to avoid the appearance of expansion
shocks, as seen in Figures 17.2.3 and 17.2.4, by providing enough dissipation
when the intrinsic dissipation of the scheme vanishes at sonic transitions.

17.3.1 General form of artificial dissipation terms

Lax and Wendroff (1960) made a general analysis on the conditions to be fulfilled
by an additional dissipative term added to a difference scheme of second-order
accuracy.

The numerical fluxes f¥, , , given by equations (17.2.8), (17.2.32) or (17.241)
for the different versions of the non-linear Lax—Wendroff schemes do all have
the same structure and are members of a general family, which can be written
according to Lax and Wendroff (1960) as

i
fr12 =L12"l!_%TA(+1/2(fi+>1 =) =D, U, )U;s, —U) (1734

where D is any positive function of (U,,, — U;) which goes to zero at least
linearly with (U,, , — U)).

All the numerical fluxes of the form (17.3.4) satisfy the requirement derived
in Section 9.4 for second-order accuracy (equation (9.4.22)), written here as

arx 6f"‘) 2
- = —1A? 17.3.5
(avm v, )y, (17.33)

The freedom in the choice of the function D can be used to generate additional
dissipation in the scheme in order to control the high-frequency oscillations
generated around discontinuities.

The function D must have the dimensions of A4, that is the dimension of a
velocity, and therefore D Ax has the dimensions of a viscosity if u represents a
velocity component; Lax and Wendroff call D the artificial viscosity. Introducing
(17.3.4) into the general form of the conservative scheme (17.2.7) leads to the
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Lax—-Wendroff scheme (17.2.5) with an additional contribution from D:

Ut = Ul = —tfl 1= S 1hw '
+ D4 1(Upsy =U) =Dy p (Ui = Uy )] (17.3.6)

where the artificial viscosity term can be considered as a discretization of
Ax(8/0x)((D(@U/dx)). Hence, the addition of an artificial viscosity (AV) term
can be considered as a modification of the numerical flux f* which is replaced by
ou
FAVE = f* AxDa— (17.3.7a)
x
and in discretized form :

SEUs =503 = Doty p(Uiyy = U)) (17.3.70)

where D is at least proportional to Ax in order to maintain the second-order
accuracy. Note the similarity of equation (17.3.7a) with the viscous flux terms
of the Navier—Stokes equations, where D Ax plays the role of the viscosity.

The additional terms will have a non-negligible influence at points where the
solution undergoes strong variations, but will be negligible in smooth regions
where they are at least of the order of the truncation error.

In order for D, , to have a stabilizing influence, it has to be positive.

However, one can also define D as a polynomial function of (U;,, — U,),
which is often done in practical implementations of artificial viscosity terms.

17.3.2 Von Neumann—Richtmyer artificial viscosity

The original method applied by Von Neumann and Richtmyer (1950) can be
written for a one-dimensional flow in the above form, when the conservative
variable U is replaced by the velocity u for the momentum and energy equations
and is not considered with the continuity equation. The origin of the method
is based on the consideration of an additional pressure term, which is added
only to the momentum and energy equations, under the following form, for a
one-dimensional case:

0
ou Ou| ou
—=alAxp|l||—|— 17.3.8
0x p 0x| 0x ( )
u
The discretized form of the associated dissipation terms is
0
Dyyyp(p —w)=0p; )| 1 |ty — il (44 —u;)  (17.3.92)
Ulivi
or as alternative
0
Di+1/2(ui+1 _ui)=api 1 Iui+1 _uil(ui+1 —ui) (1739b)
ujl;
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The coefficient « is of the order of unity and has to be adjusted empirically.
In multi-dimensional problems, similar terms are added to each flux
component separately.
The Von Neumann and Richtmyer artificial viscosity can be generalized to
the following form:

ou

ox

ou

FAVE _ fx_AxZy
ox

(17.3.10)

where Y are positive coefficients, which could depend on the mesh point i, such
that ¢ U has the dimension of a velocity. Equation (17.3.10) is not to be
interpreted as matrix products, but is to be read componentwise.

The artificial dissipation of Von Neumann and Richtmyer is non-linear and
proportional to Ax?. Lower-order expressions have been attempted, for instance
of the form

D =aAx(lu|+¢) (17.3.11)

but this gives generally too much dissipation in smooth flow regions and is not
sufficiently selective in regions of sharp discontinuities.

Example 17.3.1 MacCormack scheme with artificial dissipation

In MacCormack’s scheme the dissipation terms are generally added both at
the predictor and corrector levels. In this case the scheme can be written as
follows:

ﬁi = —t(fis, — S+ AQI+ D}, (Ui, — U — 1D} (Ui = U, _ )
(E17.3.1)

Eg= —T(_f_}—_,_}_l)+AtQ_i+TD_‘+1/2(lji+l —_ lji)_tD-i—l/Z(Ul'_ lji-l)
(E17.3.2)

The modified numerical flux of the explicit MacCormack scheme with the
addition of artificial viscosity becomes

AV — L(fr + )= 5[Di1 sy = U)+ Dy, (0, —T)1 (E17.33)

Figure 17.3.1 shows the result of the application of MacCormack’s scheme
to the stationary nozzle flow of Figure 17.2.2 under the same conditions but
with the addition of the Von Neumann-Richtmyer artificial viscosity. As can
be seen, the oscillations at the shock have been damped and the mass flux error
is reduced in amplitude from a maximum of 10 per cent to 0.4 per cent, but
remains still spread over a large part of the flow region.

Figures 17.3.2 and 17.3.3 show the effects of the same dissipation terms on
the shock tube flows of Figures 17.2.3 and 17.2.4. The artificial dissipation has
prevented the appearance of the expansion shocks at the sonic transition.
Observe also the smearing of the contact discontinuity and the good resolution
- of the shock. However, the results are not totally satisfactory, since some
oscillations can still be observed.



276

(

Divergent No2zle Flow

Otvergent Nozzle Flow
Steady State

Steady State
T v

T T T

X-Coordinate (m)

T T j 1 ’ 0.30

L s

] 4 0.80

1 J 150

]

~ {e.70

(3]

3 Jis @

£ °’ g
g > ] o.60

§ =

é L 4 1.60 g
[ < 1 e.50

L Ja.s
b .

4 0.40

L Jo.50

" i s i A L i L 0.30

0.00 2.60 4.00 6.00 8.09 10.80 0.06 2.00 4.00 €.00 8.60 10.00

X-Coordinate (») X-Coordinate (m)
Divergent Nozzle Flow Divergent Nozzle Flow
Steady State c e Steady State
[ T T T T 200xiod [T 7 ! T Y
s J6.00x10°2
L J 1.50
[ 4
§, 5t ] 4.00
x| Jiee 2
§ 3
€ -~
& .
-t . ) {200

| 9 4 0.58 o

N k 8.08

hﬁ’- {-8.88 ' M j

0.00 2.00 4.00 6.00 8.0  10.00 0.90 2.00 4.00 6.90 8.80 10,80

X-Coordinate (m) X-Coordinate (m)
Divergent Nozzte Flow
Steady State
Ja.00x103

s ] 2.08
[N
2
]
E]
% AAAA 0.60
3 Al M
E i JV\-/"

i {-2.60 Figure 17.3.1 Results of MacCormack’s
scheme applied to the stationary flow in a
diverging nozzle with 81 mesh points at

A X ) X 408 CFL =09, with Von Neumann—Richtmyer

6.68 2.0 4.0 6.60 8.00 18.00 artificial dissipation. Calculated results 000

Exact solution



27F

Shock Tube Flow Shock Tube Flow
Solution at t = 6.1 msec. Solution at t = 6.1 Asec.
T Y T T T - T T T
X 4 1.80
0.0 3 m 1.58
Je. b
- q
3 J0.68 §, | 1.8
E 3
3 -
c E 4
5 o
8 J 8.4 £
2 Wt ] o050
@
Je.20
M“—O—& 8.00
@
; -ﬂ”e @
s " n " s s s N
6.60 2.90 4.00 6.08 8.08 16.686 0.68 2.08 4.00 6.08 8.08 10.66
X-Coordinate (m) X-Coordinate (m)
Shock Tube Flow Shock Tube Flow
Solution at t = 6.1 msec. Solution at t = 6.1 Asec.
T T T T T T T T
J1.00x10%
2 g
g S
o x
® <
@ “
£} z
s N L . ) N s s
6.08 2.00 4.00 6.00 8.08 18.80 0.00 2.60 4.68 6.68 8.06 10.086
X-Coordinate (m) X-Coordinate (m)
Shock Tube Fiow Shock Tube Flow
Solution at t = 6.1 msec. Solution at t = 6.1 msec.
r v T T T T T T
3.80102
. ®
1.25x10°
2.56
1.00
> 4 2.08
g g
> 8.75 s
] > 4 1.58
x -
3 -
% 9.50 §
g ’ 2 ]1.00
8.25 J 8.50
h 6.68 0.60
N " " N N
6.00 2.00 4.90 6.80 8.00 16.60 8.08 2.00 4.90 6.08 8.08 10.08

X-Coordinate {(m) X-Coordinate (m)
Figure 17.3.2 Results of MacCormack’s scheme applied to the shock tube problem of Figure 16.6.8,

with 81 mesh points at CFL = 0.95, after 35 time steps, with Von Neumann-Richtmyer artificial
dissipation. Calculated results 000 Exact solution



Mach number

278 Shock Tube Flo: Shock Tube Filow

Pressure (Pa)

Mass flux (Kg/mn2s>

Solution at t = 5.9 nsec. Solution at t = 5.0 msec.
T - T T T T
[ T T N 1 1.5
3.60
1125 f‘ @
@
4 1.00 b
gl 2.0
é" v
d0.7 3 [~
&
g
€
Jeosa W @ 180
J8.2s
" . ] 8.88
ﬁa.ea
N N s L . N ' L
8.80 2.00 4.00 6.80 9.60 18.60 8.08 2.60 4.00 6.08 8.00 18.60
X-Coordinate (m) X-Coordinate (W)
Shock Tube Flow Shock Tube Flow
Solution at t = 5.6 msec. Solution at t = 5.0 msec.
T T T T Y T T T
41.00x10° 1.00
3 0.88 6.80
s
-
s 0.60 > 8.68
=
2
]
L 0.40 g 8.40
o
8 6.28 0.28
- 8.06 6.60
. n N . N i . s
6.88 2.00 4.68 6.00 8.60 16.06 8.08 2.08 4.60 6.00 8.06 10.80
X-Coordinate (m} %-Coordinate (m)
Shock Tubs Flow Shock Tube Flow
Solution at t = 5.0 msec. Solution ot t = 5.8 nsec.
T T T T T T T T
& 1.25x10? Ja.00x1
1.60
4 3.89
)
8.7 &
2 4 2.00
] .
8.58 ®
3
4 L.00
0.25
~ p 6.080 . g H 0.86
N L s N . s 2
8.08 2.68 4.00 6.080 8.60 10.80 e.ee 2.80 4.08 6.00 8.96 10.80

X-Coordinate (n) X-Coordinate (m)

Figure 17.3.3 Results of MacCormack’s scheme applied to the shock tube problem of Figure 16.6.9,
with 81 mesh points at CFL = 0.95, after 35 time steps, with Von Neumann-Richtmyer artificial
dissipation. Calculated results coo Exact solution ———



279
17.3.3 Higher-order artificial viscosities

A third-order artificial viscosity has been applied by MacCormack and Baldwin
(1975), whereby D is made proportional to a second derivative of the pressure
field in order to enhance the effect of the dissipation in the presence of strong
pressure gradients and to reduce it in the smooth flow regions.

The D factor is defined as follows:

p=cax*e|? i~ p (17.3.12)
P x
and the modified numerical flux becomes
2p
FAVIE _ fx g Ax slul+c zx Zx (17.3.13)

It is generaily computed as follows:

|Pisy —2Pi+ Py, |
fﬁﬁ‘?/‘z( = flﬂ,}; —e(jul + )iy P::”4'2p¢+p:_i (Ui —UY) (17.3.14)

Another form of artificial viscosity is based on the addition of higher-order
derivatives. It cannot be written as (17.3.7) but takes the form, with a =ju| +c¢
as the scaling velocity,

A% 3 Y
fOV* = f* +eAx(ul + )= (17.3.15)
X

and represents a dissipation proportional to a fourth difference, linear in U.
This last expression has been introduced by Steger (1978) in the Beam and
Warming schemes to be discussed in the following chapter.

Jameson’s artificial dissipation

Jameson and others (Jameson et al., 1981; Jameson, 1982) apply a blend of the
expressions (17.3.14) and (17.3.15) with excellent shock-capturing properties. In
this approach the third derivative term is switched off when the quantity.(17.3.12)
dominates. The same formulation has also been applied by Pulliam (1984) and
Pulliam and Steger (1985) into the Beam and Warming codes with excellent
results. :

The corrected numerical flux is defined by

f(AV)* — —d.
i+1/27 :+1/2 i+1/2

(17.3.16)

where d combines the MacCormack—Baldwin artificial dissipation with the
linear fourth-order dissipation (17.3.15) in the following way:

di+1/2=£ﬁ-)1/2(Ui+l Uj)— 11/2(U.+z—3U,+1+3U Ui-y)
(17.3.17)
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where &2 is defined iccording to equation (17.3.14) and &% according to
equation (17.3.15).
The non-linear coefficient &2 is evaluated by

e, =3E? +&2) (17.3.18)
or

&1/, = max (e,{2) (17.3.19)
where

|Pi+1— 2P+ Pi-il
Pi+1+2pi+ Pi-y

£® = a?(|u| + ¢), (17.3.20)

The pressure term in £ is generally of second order, except in regions of strong
pressure gradients, where it reduces to first order or becomes of the order of
one. Hence, around shocks, the &? term is dominating.

This did not appear to be sufficient to avoid completely some small oscil-
lations, of the order of 1 per cent in density variation, preventing the complete
convergence to the steady state. They are noticeable mostly near regions with
sharp gradients, such as airfoil trailing edges.

These oscillations were removed by the introduction of the third derivative
term (17.3.15), providing some background dissipation through the domain, but
led to the reappearance of overshoots around the shockwaves. Hence, the
background dissipation is turned off when &® is large and one defines

&%), = max[0, (@™ — &3, , U+ c)i+1/2)] (17.3.21)

where o/® is an adjustable constant.
Typical values of a'® and o® are

a®x o sl (17.3.22)

1
r 256

The dissipation terms are added to the four equations, but in the energy
equation the fourth component of U, namely pE, is replaced by pH in equation
(17.3.17). This ensures that the steady state satisfies H = H , = constant. Details
of implementation and considerations of boundary treatment of these dissipation
terms can be found in Pulliam (1985) and Swanson and Turkel (1987).

Many other forms of artificial viscosity can be found in the literature, and
although the introduction of artificial viscosity may appear somewhat arbitrary
it is by far not as ‘artificial’ as a first impression might lead us to think.

It will be shown indeed in Chapter 20 that any upwind scheme can be written
as a central scheme plus dissipation terms. This fact has already been introduced
in Chapter 15 when dealing with the calculation of transonic potential flows.

It shows that the dissipation terms introduce an upwind correction to the
central schemes, such as to remove non-physical effects arising from the central
discretization of wave propagation phenomena. These effects arise mainly
around discontinuities, where a sudden change in the propagation direction of
certain waves occurs. Due to its nature, the central discretization is not able to
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handle this discontinuous change and generates oscillations. On the other hand,
the upwind schemes are on the contrary defined as a function of the signs of
the propagation velocities. Some form of equivalence is obtained in this way
between upwind schemes, on one hand, and central schemes with artificial
viscosity, on the other hand. It will even be shown in Chapter 21 that the
introduction of upwind, second-order non-linear algorithms, controlling and
preventing the appearance of unwanted oscillations, called TVD (total variation
diminishing) schemes, allow the definition of artificial viscosity terms for Lax—
Wendroff schemes, rendering them equivalent to upwind TVD schemes. This
approach leads to artificial viscosity forms, without adjustable and empirical
constants.

In the following we will refer to various forms of artificial viscosity and we
encourage the reader to experiment with various forms on simple test cases.

Figure 17.3.4 shows the same test case as Figure 17.3.1 with the MacCormack—
Baldwin dissipation (17.3.12) and & =0.625. Comparing to Figure 17.3.1 one
notices the sharper shock, which is resolved over two mesh cells. The mass flux
error is also extremely narrow and concentrated over the shock only. This
indicates that the filter provided by the pressure derivatives in the dissipation
terms is indeed very effective. Note, however, that the maximum mass flux error
remains here at the level reached without artificial dissipation.

When applied to the shock tube problems of Figures 17.3.2 and 17.3.3, similar
observations can be made with regard to the shock definition, namely that the
shock is sharper with the MacCormack-Baldwin dissipation.

Remark

Some ambiguity is found in the literature with regard to the definition of
numerical and artificial viscosities.

Lax and Wendroff call the function D in equation (17.3.4) the artificial viscosity
defined as the contribution in the numerical flux above the Lax—Wendroff term
%tAi+1/2(fi+l — f3) or, according to (17.2.22), (z/2)AZ, 12Uy — U

More recent trends write the numerical flux as

fuithi_,p
ferp =57 =401, Uiy ~ U) (17.3.23)

and call the function D, ,,, = D(A,, ;) the coefficient of numerical viscosity.

The significance of these denominations should be related to the numerical
dissipation as obtained from the truncation errors. A first observation should
be kept in mind, namely that the truncation error will have the structure of an
effective viscosity or dissipation only if the scheme is first order. In this case,
the truncation error has a term proportional to U,,.

For instance, in the Lax—Friedrichs scheme, equation (17.1.19) shows that
D(A,,,,,)=1/z, but from the truncation error one has an expression of the
form of equation (17.1.7), where a = (Ax?/2At)(1 — t2A?) plays the role of an
effective numerical dissipation coefficient.
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More generally, the first-order truncation term of a scheme in conservative
form with a numerical flux f* is given by equation (9.4.21), Chapter 9 in
Volume 1. Applied to the above equation (17.3.16), the coefficient of the U,
term can be written as

or+* aof* _

f —L+mz=—D+m2 (17.3.24)
2U,,, o,
and the effective numerical dissipation coeflicient, to be compared to the physical
viscosity, is

Ax -
a= ,EX(D — 1A% (17.3.25)

The Lax-Wendroff scheme corresponds to D =142 and equation (17.3.4)
corresponds to D =tA%+ 2D, where D goes to zero with (U;,, = U,). Hence
D is proportional to Ax and does not contribute to the U, truncation error.

For second-order schemes, the lowest-order truncation error is a dispersive
error of the form fAx2U,,,. Hence, the dominating effect is not of a dissipative
nature and care has to be exercised in the interpretation of terms like D and
D as ‘viscosity’ coefficients in a strict sense.

N
174 LERAT’S IMPLICIT SCHEMES OF LAX-WENDROFF TYPE

The schemes of the Lax—Wendroff family presented in the previous sections are
explicit as an outcome of the initial derivation by a Taylor expansion in time,
followed by a central space discretization. When compared to the straight-
forward central space discretization of the flux terms, f, = (fi,, — fi_,)/2Ax,
which is unstable with an explicit forward difference in time, the Lax-Wendroff
approach can be considered as a means to introduce some dissipation in the
scheme through the time derivative terms. This dissipation is proportional to
the time step and is sufficient to stabilize the central flux difference, although
additional dissipation has to be introduced in order to resolve the shock
oscillations.

A similar line of development can be adopted to generate implicit schemes,
in the line of the Lax—Wendroff ‘methodology’, by combining time and space
discretizations in order to achieve certain desirable properties. This approach
has been applied by Lerat (1979, 1985) to generate a family of implicit, central,
second-order schemes depending on three parameters that are unconditionally
stable and have dissipative properties, resulting in an implicit extension of the
Lax—Wendroff schemes.

The reason behind the development of implicit schemes is to be found in the
severe limitation on the permissible time step of explicit schemes as a
consequence of the CFL-condition. If a,,, is the maximum speed of propagation
of a one-dimensional problem a,,,, = (|| + €)pnax, the time step At is limited by

At <CFLmin o A¥min gy

amax (I uI + C)mn




(

where CFL is the maximum Courant number. The maximum allowable time
step At can become very small, particularly with fine meshes.

With steady-state problems, where the stationary solution is sought and
convergence is reached when the variations AU = U"*! — U” come below an
imposed limit, explicit schemes will require a large number of time steps, of the
order of several thousands. Although this concern becomes less severe with the
development of new generations of vector and parallel processors and with the
introduction of multi-grid techniques, it is still important to be able to reach
the computed steady-state flow in a minimum of time steps.

When time accuracy is not required for stationary flows solved, with a
time-dependent method, one can apply a simple convergence acceleration
technique by using local time steps which differ from one point to the other as
a function of the local propagation speeds and corresponding local CFL
condition. Hence, one will allow the solution to progress in time towards the
steady-state conditions, at a different pace in each point.

The local time step at point i will be defined by
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A-xmin

FL_ Afmin  pp o B¥min cpyp
(14| + max

(Jul +c);

The time evolution of the solution loses its physical significance since the
time-dependent problem which is solved in this way corresponds to the pseudo
time-dependent equation U, + f, =0, where t* =t-(Ju|+ C)ma,/(lul +¢). An
alternative for strongly varying mesh sizes is to select

w_ Ul + Omax, Bx
(|u|+c) Axmin

leading to a local permissible time step
Ax;
FL_2% _
(lul +c)

This leads to significant improvements of convergence rates but remains limited
since the overall convergence rate will still depend on the slowest progressing
zones.

Implicit schemes can also be important for time-dependent problems when
the time scale of the unsteady phenomena is much larger than the time step
allowed by the CFL condition. Although time-accurate solutions are required
in this case, the possibility of allowing larger time steps than the CFL limit leads
to a welcome gain in computational efficiency.

Therefore an alternative to the explicit schemes lies in the development of
implicit methods that allow, as a consequence of their unconditional stability,
higher time steps, limited only by accuracy requirements and eventual non-linear
stability problems or boundary condition treatment.

We will present the developments of Lerat in some detail in this section, not
only because of the interest and importance of the resulting schemes but also

At,=C (17.4.1)
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because of the considerable didactic value of the rigorous and systematic analysis
at the basis of these developments. As we will see from the following, all the
properties of numerical schemes will be called upon in order to specify conditions
on the parameters of the scheme. The truncation error analysis will lead to
conditions on the order of accuracy and the development of the equivalent
differential equation will provide guidelines for optimization of the dispersion
and diffusion errors. The Von Neumann analysis will lead to conditions for the
stability of the scheme and also to conditions for the solvability of the implicit
operators (non-vanishing of the implicit operator). Furthermore, the error
analysis will allow conditions to be set for maximal dissipation of high-frequency
errors; in particular it can be requested that the Kreiss dissipative condition be
satisfied for the parameters of the schemes. The available degrees of freedom
also allow the imposition of an additional condition on the implicit
operator, namely strict diagonal dominance.

Finally, the resulting three-parameter family of schemes can be tuned to
optimize certain desirable properties: for instance, maximize convergence rates
for stationary problems, or minimize dissipation and dispersion errors for
unsteady flows, or fix the order of accuracy of the first, explicit, step, opening
a wide range of Lax—Wendroff variants for this step.

17.4.1 Analysis for linear systems in one dimension

The starting point is the following, most general, implicit scheme with two time
levels and three-point support for the linear system U,+ AU, =0, which
generalizes the explicit form (9.2.10) in Volume 1:

e Ut 4 coUit 4 ¢, Ust =b_ UI_ +boUs + b, UL, (17.42)

i—-1
The coefficients b; and c; are general functions of 7 = At/Ax and A. The following
considerations are an extension of the procedures developed in Section 9.2 in
Volume 1, to which the reader is referred for the details of the calculations
concerning the truncation errors and the consistency conditions.
A first consistency condition, expressing that a constant U should be a possible
solution, is

Y b= Y =1 (17.4.3)

Performing a Taylor expansion in the same way as in Section 9.2.1, the (p + 1)
conditions for the scheme (17.4.2) to be accurate of order p in space and time
for fixed ratios T = At/Ax are obtained as

Yjimb;=Yc j—o)" for m=0,1,2,...,p (17.4.9)
- J - J
J J

where ¢ is defined by

o=14 (17.4.5)
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For a scalar equation, A =a and ¢ is the Courant number. For a system of
‘equations, ¢ is a matrix whose maximum eigenvalue will represent the Courant
number of the scheme, following equation (17.2.14).
It can be seen that equation (17.4.4) is a direct generalization of
equation (9.2.23) and that the coefficients b; and c; are only dependent on .
Eliminating b, and ¢, via equation (17.4.3), four coefficients are left, and
defining

b,=b,+b_, b_=b—b_, }
cy=¢C;+cy C_=¢C;—C_y (17.4.6)
the schemes (17.4.2) can be written as follows (see problem 17.31):

Urtl 4 UM +1c, 82U = U+ b_6UT +4b, 62U (1747)
The difference operators have been defined earlier (equation (14.1.2)) and 82 is

the central second difference 6%U;=U;.,—2U;+U,_;. In A form,
equation (17.4.7) can be written as

[1+c 8+, 62 AU =(b_ —c_)8UT +1(b, —c,)32U"  (1748)

Note that it is assumed for the moment that 4 is a constant matrix and therefore
the coefficients b and c are also independent of the mesh point index i.

Obviously we require that the schemes be at least first-order accurate and
the first consistency condition (17.4.4) for m =1,

b_—c.=—0 (17.49)

imposes the condition that the coefficient of the first difference in the right-hand
side of equation (17.4.8) be equal to — o. This merely shows that this term
should be an approximation to the space derivative A0U/0x.

Equation (17.4.8) becomes

[t+c_8+1c,82]JAU= —adUT + 4(b, —c,)0?U;  (174.10)

The choice b, =c, =0 and c_ =00 reproduces the Beam and Warming
schemes (18.1.10) with £ = 0 to be introduced in the following chapter (see also
Problem 17.30).

In addition, if the coefficient of the second difference term in the right-hand
side is set equal to 7, the explicit scheme obtained by c, =0 reproduces the
family of first-order schemes (9.3.3).

If we look for, at least, second-order schemes in space and time, the relations
(17.4.4) for for m = 2, expressed as a function of the b, and ¢, coefficients, become

b, —c,=—20c_+d> (17.4.11)

and equation (17.4.10) can be expressed as a function of the parameters c;
defining the implicit part of the algorithm as

[1+c_8+1c,0%]AU;= —adU" + {0 —2c_)0é’U?  (174.12)
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The explicit scheme, obtained by setting the ¢, coefficients to zero, is the unique
second-order space-centred scheme on the three-point support, namely the
Lax—Wendroff scheme (17.2.6). For any other choice of the ¢, coefficients, an
implicit scheme is obtained, which maintains the second-order accuracy on the
same three-point support.

The Beam and Warming schemes to be discussed in the following chapter are
defined by the central discretization of the flux terms in the right-hand side of
the A formulation. This implies the absence of any second difference term in
the right-hand side residuals, hence, c_ = 6/2, leading to the trapezoidal scheme
6=3, whenc, =0.

For third-order accuracy, the additional condition

1—¢?
3

has to be satisfied, while the unique fourth-order accurate scheme will satisfy,
in addition, the condition

\ c,=0dc_+ (17.4.13)

4

2

e = (17.4.14)

Von Neumann analysis: stability and solvability

A classical Von Neumann stability analysis is applied to the general scheme
(17.4.7), leading to the amplification matrix G defined by

[1+Ic_sing—c,(1—cos¢)]G=1+1Ib_sin—b (1 —cos¢) (17.4.15)

A first condition to be imposed on the implicit operator is that the factor

multiplying G (which is equal to one for an explicit scheme) should not vanish

in the range ¢[ — =, n]. This ensures that the scheme will always be solvable.
Hence this will be the case if

e <3 (17.4.16)
The stability of the scheme can be analysed following Section 8.6.1 in Volume 1,

where the conditions (8.6.7) can be directly applied. The following necessary
and sufficient conditions are obtained in this linear case:

b2 —c2 <b, ~c, (17.4.17a)
b2 —c2 <b, —c, (17.4.17b)

For an explicit scheme, where ¢, = c¢_ =0, the stability conditions reduce to
b2 <b, <1 (17.4.18)

For the Lax—Wendroff scheme, with b_ = ¢ and b, = 62, one obtains the CFL
condition |o| < 1.

Dissipative properties

The schemes (17.4.7) will be dissipative in the sense of Kreiss (see
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equation (8.5.13)) if the spectral radius of G satisfies the condition
p(G)<1—K¢p* for K>0 and ¢[—mn] (174.19)

From an analysis of the amplification matrix in the limit as ¢ -0 and in the
region ¢ =7, it can be shown (Lerat, 1981) that the schemes considered are
dissipative in the sense of Kreiss if the stability conditions (17.4.17) are satisfied
with a strict inequality in (17.4.17b). This implies, next to stability, that

b, #c, and b,#1—c, (17.4.20)

for all eigenvalues of A.
For an explicit scheme, these conditions reduce to

b,#0 and b, #1 (17.4.21)

When the schemes are dissipative, the order of dissipation is four, with the
exception of the first-order schemes which are dissipative of order two only.

For the Lax-Wendroff schemes, b, = ¢ and the scheme is dissipative when
the Jacobian matrix 4 does not have zero eigenvalues.

Diagonal dominance

A property on the implicit operator that guarantees the convenient resolution
of the algebraic system of the unknowns U"*! either by direct or by iterative
methods, is the condition of strict diagonal dominance. For the system (17.4.2)
applied to a scalar equation, this is expressed by

lcol > leg | + eyl (17.4.22)
or in function of the ¢, coefficients as
[1—c,|>fcs +e_|+ley —c] (17.4.23)

By simple inspection it is seen that the condition of strict diagonal dominance
is satisfied if

c. <% and c, +le_|<1 (17429

Observe that the conditions (17.4.24) are more severe than the solvability
condition (17.4.16).

17.4.2 Construction of the family of schemes

The above-derived properties have to be satisfied by the coefficients b, and
¢4, considered as arbitrary functions of ¢ = 4 At/Ax.

Realistic algorithms will be obtained if the schemes are restricted to coefficients
that are polynomials of ¢. Although one could define more complex schemes,
they do not appear to be of general interest.

In addition, at least second-order accuracy in space and time is requested
and the schemes with the lowest number of free parameters are obtained for
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polynomials with degree lower or equal to two, as can be seen from
equations (17.4.9) and (17.4.11).

Equation (17.4.11) shows that ¢ _ may not be of degree higher than one and
the most general form is then

c.=ac+yu (17.4.25)

c,=Ppa*+vo+7y

where a, 8,7, u, v are real numbers.

If the condition (17.4.13) for third-order accuracy is introduced the coefficients
have to be restricted to f=a—3, y=4%, p=v, with a#1. For a<$, the
third-order schemes are solvable and stable for ¢ < 1, and if the CFL number
o is restricted to ¢ <1, the scheme is also dissipative and strictly diagonal
dominant. A simple choice is & =0, f =3 and y =3. The unique fourth-order
scheme, =%, =%,y =4, p=v=0is solvable only if 62 <1 but in this case
the scheme is not dissipative. It has been analysed in some detail by Harten
and Tal-Ezer (1981).

Family of schemes are now constructed which are implicit and space centred,
second-order accurate in space and time, unconditionally stable, dissipative,
solvable and satisfying the scalar condition for strict diagonal dominance.

The requirement of space-centred schemes implies that the scheme remains
invariant when (i — 1) is changed into (i + 1) while A changes into — 4. Hence,
from the formulation (17.4.7), it is seen that one should have

c_(—o)=—c_(0) and c(—0)=c.(0)
b_(—o)=—b_(0) and b.(—0)=b,(0)

With the choice (17.4.25) these conditions will be satisfied when y=v=0
and one obtains

(17.4.26)

c.=ac b_=(@a-1)o
c,=po*+y +=(1—-2a+po*+y
The schemes (17.4.12) then take the following form:
[1 + a68 + 1(Bo? + )62 JAU" = — 68U? + 3(1 — 20)026U; (17.4.28)

Some of the schemes to be discussed in the next chapter belong to the family
(17.4.28). The choice a =4, f=y=0 is the trapezoidal Beam and Warming
scheme corresponding to 8 = 1, £ =0. The choice « =3, =0, y = 3 reproduces
the scheme (18.1.14) for 6 =1, £ =0, which has fourth-order spatial accuracy
but is only second order in time.

More insight is obtained when the algorithm (17.4.28) is written as a two-step

scheme, whereby the explicit part is separated from the implicit operations.
Defining an intermediate variation AU by

AU, = —65-U" + (& — 002 62U" (17.4.292)

(17.4.27)

[1 + aod + L(Ba? + 7)6*]AU? = AU (17.4.29b)
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The first step, (17.4.29a), is an explicit operation that defines AU, by a
Lax—-Wendroff-type scheme. For « = 0, this step is identical to the Lax~Wendroff
scheme and has the same CFL limitations on the maximum time step for
stability. However, the second step introduces an implicit correction on AU,,
which extends the admissible maximum Courant number and provides
additional dissipation through the parameters o, f and y.

When a = f=y=0, the scheme is identical to the explicit Lax—Wendroff
scheme. However, for a 0, the explicit step is only first-order accurate and
the implicit step provides a correction on the truncation error of the first step,
such that the overall solution U"*! = U" + AU" is second-order accurate.

The above general requirements can now be translated into conditions on
the coefficients «, §,y. The solvability condition (17.4.16) has to be valid for all
values of g, and from

Bo?+y <1t (17.4.30)

we deduce
<0 and <3 (17.4.31)

Adding the conditions for unconditional linear stability requires
B<a—13, y<i a<i (17.432)

In order to ensure a dissipative scheme, the conditions (17.4.20) have to be
satisfied, that is

(1 —20)5% #0 (17.4.33)

When the eigenvalues of A are different from zero, the parameter o may not
take the value ;. Hence the last condition in (17.4.32) is to be replaced by

a<i (17.4.34)

It is to be observed at this point that the schemes will not be dissipative
when the eigenvalues of the Jacobian matrix go through zero, that is at sonic
and stagnation points. Therefore, these schemes might still need some artificial
dissipation to damp oscillations that would occur at shock discontinuities (Sides,
1985). However, further extensions by Lerat and Sides (1986) indicate that with
an appropriate treatment of the explicit step and the addition of implicit
boundary conditions, excellent shock-capturing properties are obtained without
any artificial viscosity.

. Finally, the conditions (17.4.24) for diagonal dominance are satisfied for all
values of ¢ if

a?

41—y

B< a=B=0 (17.4.35)

and
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Hence all the properties will be satisfied for all values of the CFL number o if
2

T 4(1-y)

This still leaves a large number of possible schemes, and additional conditions
can be imposed in order to satisfy certain properties, such as the maximum
convergence rate or minimal error generation.

1

B<a—4  y<i a<i and B< (17.4.36)

Selection of parameters

The parameter y does not seem to play an important role in the definition of
the properties of the second-order schemes (17.4.29). This can be seen, for
instance, on the expression of the amplification matrix G (equation (17.4.15)),
which takes on the following form when the definitions (17.4.27) are introduced:

= —Iosing — (1 —20)a*(1 — cos @)
"1 + laosin ¢ — (B> + )(1 — cos §)

As in the implicit step (17.4.29b), the parameter y appears always in the
combination (Ba> + y) and its influence can be overtaken by the parameter f.
Hence, setting y = 0 will not affect the generality of the schemes, nor limit the
influence of the remaining parameters a and B.

Analysing further the amplification matrix, it is seen that for a =, the scheme
does not damp the high-frequency errors, since in this case G=1 for ¢ =m.
Hence the scheme is not dissipative in the sense of Kreiss when o = 1. For other
values of &, the parameter (1 — 2a) controls the dissipation of the high-frequency

errors, since

(17.4.37)

20%(1 — 20)
1—2(Bs? +7v)
On the other hand, the parameter § controls the behaviour of the scheme at
high Courant numbers, that is for very large time steps. This is particularly

interesting for steady-state computations, where it is expected to reach the
stationary conditions as fast as possible.

Ggp=m=1- (17.4.38)

Steady-state computations
For increasing o, the amplification matrix tends to the limits

1-2a

G~ 1+ (17.4.39)
and the maximum convergence rate is achieved for
B=2a—1 (17.4.40)

since G — 0 in this case.
The behaviour at the low-frequency end of the error spectrum is obtained
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from an expansion of the amplification matrix in powers of ¢ or, alternatively,
from the first terms of the truncation error.

Applying the Taylor expansion technique to the scheme (17.4.29), following
the approach outlined in Section 9.2 in Volume 1 leads to the following
equivalent differential equation of scheme (17.4.29) (see Problem 17.33):

A 2
U,+ AU, = —%A[(l — 3y)+ 0?(a— 3 — )]V,

Ax? 5
— S oA - 20)[(1 - 2)+0°22— 26— D]Upsss (17441

From the conditions (17.4.36) it is seen that the coefficient of the U,,, term
describing the dispersion error never vanishes, which is to be expected from a
second-order scheme. Observe that the conditions y = %, f=a— %, which make
the dispersion error vanish, are precisely the conditions for third-order accuracy
of the scheme.

Unsteady flow computations

Many unsteady flows have time scales much larger than the time scale of the
propagation of the acoustic waves. In this case, the Courant number limitation
of an explicit Lax—Wendrofi-type method will lead to allowable time steps that
are much smaller than the time steps requested by an accurate simulation of
the physical phenomena. In these circumstances, occurring for instance for the
flow along an oscillating airfoil, there is much to be gained by the use of implicit
methods, where one can adapt the time steps to the desired accuracy without
being limited by CFL conditions of explicit methods.

One would like, in such a situation, to minimize the dispersion and diffusion
errers during computation. This can be achieved by looking at the dominant
contributions to these errors from the right-hand side of equation (17.4.41) for
large values of the Courant number o, namely the coefficients of the 62 terms.

From the conditions (17.4.36), it is seen that the coefficient of ¢ in the
dispersion error never vanishes and reaches its lowest value for the choice

B=a—% (17.4.42)

which is also the value for which the ¢? term vanishes in the dissipation error
term. Observe also that the coefficient of the U, term is always negative, as
it should be for stability, as seen in Section 9.2 in Volume 1.

17.4.3 Extension to non-linear systems in conservation form

The derived family of implicit schemes (17.4.29) can be extended in a straight-
forward way to the non-linear system in conservation form
ou of
+U_

-~ 17.4.43
ot  Ox ( )
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as follows:

AU = — 517+ (% — a)r23(A75 f7) (17.4.442)
[1 +atdA" + ﬂ 125(A28) + - 62]AU =AU, (17.4.44b)

The scheme (17.4.44) can be considered as constituted of an explicit step of the
Lax—Wendroff type, to which it reduces exactly for a = 0 (see equation (17.2.5)),
followed by an implicit operator defined by equation (17.4.44b).

Introducing the numerical flux of the scheme

i+ T
e fit fina fm —( =204, (e = f) (17.4.45)
equation (17.4.44) becomes
|:1+a16A +ﬁ125(A25)+ 52] AU;= —15f* (17.4.46)

The choice a =0 is of particular interest since the explicit step becomes of
second-order accuracy and is then identical to the Lax—Wendroff scheme. In
addition the § term in the implicit operator,

Br23(A25AU) ~ BAB AU, ~ BALPU,, (17.4.47)

is of the same order as the truncation error of the Lax—-Wendroff scheme.

The implicit step can therefore be considered as an implementation of a
correction to the explicit truncation error without affecting the overall accuracy
of the scheme.

Note that in the non-linear case, the maximum order of accuracy cannot
exceed two, since the non-linear fluxes introduce truncation terms proportional
to Ax?, as seen in Section 9.4 in Volume 1.

A similar idea of increasing the accuracy of a scheme by solving a modified
equation, obtained after subtracting a fraction of the leading non-linear
truncation error, has also been analysed and exploited by Klopfer and McRae
(1983).

With the choice y = 0, the simplified schemes with & = 0 become

AU, = — 15"+ 1126(4%6 f7) (17.4.482)
[ ﬂ 26(,42(5)]AU AU, (17.4.48b)

The choice a = 0 allows the substitution of the explicit step by any other scheme
which is linearly equivalent to the Lax—Wendroff schemes. Therefore, any of
the methods discussed in Section 17.2 can be used. Lerat (1981) and Lerat et al.,
(1982, 1985) have applied various versions of the S# scheme, in particular the
optimal choice (1 + \/5/_2, 0) for the explicit step.

For steady-state calculations, optimal convergence rates will be obtained with



™~
294
the choice (17.4.40), that is § = — 1, while unsteady calculations will be optimized
by selecting f = — 1, following (17.4.42).
Since the first, explicit, step has the full second-order accuracy of the scheme,

the intermediate value AU can be considered as equal to At¢*R”", where R” is
the residual of the space balance of the fluxes.

The implicit step can therefore be viewed as a way of redistributing the
residuals, producing a new value AU from the explicit initial approximation

AU. In particular, considering A? as a constant in the implicit step is identical
to the residual smoothing step applied by Jameson, as will be seen in next
chapter, equation (18.3.10).

For steady-state computations, the physical solution correponds to AU =0,
that is to the right-hand side of the first, explicit, step equal to zero. The second,
implicit, step improves the convergence rate by allowing large time steps through
the unconditional stability and provides additional dissipation to damp
undesirable high-frequency errors. However, it has no effect on the final
converged solution which is completely defined by the first, explicit, step. Hence,
the second step can be viewed, for steady-state problems, as a mathematical or
numerical step.

Simplification of the schemes

The block tridiagonal system in (17.4.48b) can be replaced by scalar tridiagonal
inversions if A4; is approximated by its maximum eigenvalue a,,,, = |u| + Cpq,.
The system (17.4.48b) becomes, with p(A) representing the spectral radius of
the matrix A,

2

The implicit operator is simplified to scalar tridiagonal operations instead of
the block tridiagonal. This reduces the computational cost of the scheme but
slows down the convergence rate, as can be seen from the amplification matrix,
which becomes, instead of (17.4.37),

[1 + Erzé(pz(A,-)é):IAU,- =AU, (17.4.49)

G_l_—-alsin¢+02(cos¢—1) (17.4.50)
"~ 1+po? (cosp—1) B

In the large time step limit

0.2

G” :‘” : ﬂ atznax
Hence, the asymptotic value G—,,_, 0 cannot be reached and slower
convergence rates are to be expected. This is confirmed by computations in a
diverging nozzle by Lerat et al. (1985), as shown in Figure 17.4.1. The results
shown in Figure 17.4.1 have been obtained with the simplified schemes (17.4.48)
and (17.4.49).

(17.4.51)
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Figure 17.4.1 (a) Convergence history for a one-dimensional nozzle flow with Lerat's implicit
(Lax—Wendroff) schemes.
E Explicit Lax-Wendroff scheme, (CFL = 1
I Implicit diagonalized version (17.4.49), = — 1, CFL =20
Is Implicit block tridiagonal version (17.4.48), 8= — 1, CFL = 20
(b) Computed density variation with run Is. (From Lerat et al., 1985)

Figure 17.4.1(a) shows a comparison at a CFL number of 20 of the
convergence rates for the implicit steps with block tridiagonal inversions
(17.4.48b) and with the scalar inversion (17.4.49).

The rate of convergence of the Lax—Wendroff explicit step (E) is also shown
at CFL = 1. The converged density distribution is shown in Figure 17.4.1(b),
illustrating the good shock-capturing properties of the scheme. The simplifi-
cation introduction by equation (17.4.49) will therefore only be interesting at
low CFL numbers.

Boundary conditions

A detailed analysis of the impact of the boundary conditions on stability of the
implicit schemes (17.4.48) and (17.4.49) has been performed by Daru (1983) and
Daru and Lerat (1985) for the one-dimensional nozzle flows. The results of the
analysis can be summarized as follows, referring to Chapter 19 for more details
on the various options and to the original references for the detailed derivations:

(1) At supersonic inlet AU =0 may be taken at the boundaries.

(2) Atasupersonic outlet section, the unknowns can be obtained by zero-order
extrapolation in a stable way.

(3) At a subsonic outlet, zero-order extrapolation is always stable. Linear
extrapolation is also always stable with the exception of the case f= —1
for the scheme (17.4.48) for which the stability is conditional and restricted
to CFL < 5. Quadratic extrapolation is always unstable.
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17.4.4 Extension to multi-dimensional flows

The family of schemes with « =y = 0 has an explicit step which is identical to
the Lax—Wendroff scheme and therefore the extension to two-dimensional flows
can be obtained by taking any of the two-dimensional versions of Section 17.2
as the first, explicit, step.

If AU, is the explicit variation at mesh point (i, j), the generalization of the
implicit step can be defined as

[1+§r§5,(A x)+ﬂ125 (B, y):lAUU=E‘J' (17.4.52)

In order to avoid block pentadiagonal systems, an ADI factorization is applied,
reducing the implicit part of the algorithm to a two-step procedure

[1 + ﬂrzéx(A x)]AU;.“j =AU,
(17.4.53)
[1 +ﬂ12(3 y)]AU,.,:AU;.;

For steady-state problems, the value f = — 1 is recommended.

A further simplification can be considered, losing, however, the optimal
convergence rates for high CFL numbers, by replacing the Jacobians 4 and B
by their spectral radius. This leads to implicit systems that are scalar tridiagonal,
as in equation (17.4.49), and the implicit steps (17.4.53) reduce to

[1 + ‘5’rf,fs,c(p’(Ai,-)éx)]AU:;= AU,
. (17.4.54)
[1 + Efféy(pz(Bij)éy)leUij = AU:

Applications of this approach to steady and unsteady two-dimensional inviscid
flows can be found in Sides (1985), Lerat et al. (1982, 1985) and Lerat and Sides
(1986), where the explicit step is based on the two-dimensional version of the
S# schemes presented in Section 17.2.

175 SUMMARY

The Lax—Wendroff family of schemes has been presented at some length in this
chapter, since they play a major role in the development of discretization
methods for compressible Euler and Navier—Stokes equations. They are still
widely used, in particular under the form of the MacCormack predictor-
corrector formulation.

An important feature is the requirement of the addition of artificial dissipation
terms in order to remove the oscillations around discontinuities. This requires
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good judgement and empiricism and several possible forms have been described,
although many others can be defined. A rational method for the determination
of artificial dissipation terms will also be presented in Chapter 21, in connection
with TVD upwind schemes, leading to a bridge between the central and the
upwind methods.

If the one-dimensional form of the Lax—Wendroff schemes is straightforward
to apply, a larger variety exists in multidimensions. In this connection, the
two-step formulation of Ni can be recommended as an interesting alternative,
in particular when coupled to a multigrid approach. This can actually be
generalized to any two-step formulation: the explicit Lax—Wendroff schemes
should best be applied with multigrid schemes for stationary problems in order
to compensate for the unfavourable CFL limitations on the allowable time step.

Another interesting approach for steady state problems is the implicit version
of Lerat, which can be tuned to optimal convergence for high CFL and shows
also excellent shock resolution without artificial dissipation, Lerat and Sides
(1986, 1988).
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